
Faculty of Engineering and Science
Aalborg University

Department of Computer Science

TITLE:
Persistent language extensions and
constructs for Java 1.5

SUBTITLE:
Achieving to solve a subset of the
impedance mismatch problem.

PROJECT PERIOD:
Dat5, Cis3,
Sep 1st - Dec 20th 2005

PROJECT GROUP:
d530a

GROUP MEMBERS:
Rolf Njor Jensen
Thomas Møller
Peter Sönder

SUPERVISOR:
Per Madsen

COPIES: 5
PAGES: 85

Abstract:

This report has been developed at the Faculty
of Engineering and Science at Aalborg Univer-
sity as a Computer Science project.
The purpose of this report is to shed some light
on the impedance mismatch through an anal-
ysis of existing solutions. This analysis will
then be basis for a prototype that implements
a part of a new language construct for the Java
programming language.
One of the ideas behind the new language con-
struct is that it through a Java-like syntax will
make it easier to express SQL queries. This
way of querying will also make the mapping
between the object-oriented model and the re-
lational model transparent for the system de-
veloper.
The solution handles some known problems to
existing object-relational mapping like static
type checking, type mismatch, and optimiza-
tion.

ii

It’s nice to be important, but it’s more important to be nice
Scooter, Move Your Ass!, And The Beat Goes On! - 1995.

iv

Preface

Prerequisites

Prerequisites to this report is intermediate knowledge of Java 1.5, SQL, object-
oriented programming and modeling, and the relational model.

Reading notes

During the course of this report, a considerable number of acronyms is introduced.
The first time an acronym is presented, it is written in full, followed by the short-
hand form in parenthesis: Three Letter Abbreviation (TLA). Subsequent uses of
the acronym is the shorthand form. At the beginning of this report there is a com-
plete list of the acronyms used in this report.

Typographical notes

In the rest of the report, text that is source code of some sort will be printed with
this font: “System.out.println(‘‘Hello World!’’);” or using a figure as
shown in Figure 1.

1 System.out.println("Hello World!");

Figure 1: Example of source code.

Common examples

In Appendix A there is a description of a small set of relations, which will be used
as a common example throughout the report.

v

vi

Contents

Preface v

List of Acronyms xi

1 Introduction 1
1.1 Setting the scene: “The Impedance mismatch” 1
1.2 Outline . 1

2 Analysis 3
2.1 Identifying the issues . 3

2.1.1 Static Checking . 3
2.1.2 Interface styles . 4
2.1.3 Type mismatch issues 6
2.1.4 Reuse . 7
2.1.5 Concurrency . 8
2.1.6 Optimization . 9

2.2 Reviewing Existing Solutions . 10
2.2.1 Java DataBase Connectivity (JDBC) 10
2.2.2 Hibernate . 13
2.2.3 PJama . 16
2.2.4 Cω . 17
2.2.5 SQLJ . 19
2.2.6 db4objects . 21
2.2.7 Other Solutions . 23

2.3 Discussion . 24
2.3.1 Conclusion on review . 24
2.3.2 Summarizing criteria . 25
2.3.3 Prioritizing criteria . 26

2.4 Problem statement . 29
2.4.1 Method . 29

3 Designing a solution 31
3.1 Introduction . 31
3.2 Focus of the solution proposal 31

vii

viii CONTENTS

3.2.1 Extend an existing language, or build a new one? 31
3.2.2 Working with legacy database schema’s or not? 32
3.2.3 Naming the baby . 32

3.3 Identifying persistable types . 32
3.3.1 Inheriting from a superclass 33
3.3.2 Implementing an interface 33
3.3.3 Using meta data . 33
3.3.4 Introducing new syntax 34
3.3.5 Conclusion . 34

3.4 Mapping from objects to relations 35
3.4.1 Shadow information . 35
3.4.2 Persistable object members 35
3.4.3 Type mismatch . 36
3.4.4 Modeling relationships 36
3.4.5 Modeling inheritance . 37

3.5 Querying . 39
3.5.1 Native Queries . 40
3.5.2 Fitting Native Queries to PersiJ 40
3.5.3 New language construct: Existing 41
3.5.4 New language construct: Constructed 43
3.5.5 Discussion . 44

3.6 Manipulating data . 44
3.6.1 Implicit or explicit management? 44
3.6.2 Transparent manipulation 45
3.6.3 Explicit manipulation . 46
3.6.4 Conclusion . 49

3.7 Summary . 49

4 Implementing a compiler prototype 51
4.1 Introduction . 51
4.2 Envisioning the compilation process 51

4.2.1 Steps in the pre-compiler 52
4.2.2 Identifying PersiJ code and type system generation 52
4.2.3 Syntactic and semantic verification 53
4.2.4 Code generation . 54
4.2.5 Compiling . 56
4.2.6 Optimization . 56

4.3 Actual implementation . 56
4.3.1 Grammar . 56
4.3.2 Example code . 57

4.4 Discussion . 59

CONTENTS ix

5 Conclusion 61
5.1 Conclusion . 61
5.2 Future work . 62

Bibliography 65

A Example of database and Java mapping 69
A.1 Description of the database . 69
A.2 Mapping database to Java code 70

x CONTENTS

List of Acronyms

The American National Standards Institute (ANSI)

The Institute’s mission is to enhance both the global competitiveness of U.S.
business and the U.S. quality of life by promoting and facilitating voluntary
consensus standards and conformity assessment systems, and safeguarding
their integrity. 19

Application Programming Interface (API)

An application programming interface (API) is the interface that a computer
system or application provides in order to allow requests for service to be
made of it by other computer programs, and/or to allow data to be exchanged
between them. 10, 11, 16, 21, 22, 24, 29, 49, 50

Binary Large OBject (BLOB)

The BLOB data type is from SQL, denoting a data type that contains a large
binary value. The maximum size of the type varies from RDBMS to RDBMS
36

Call Level Interface (CLI)

Interface to a RDBMS that uses text strings containing queries in the SQL
syntax to perform operations on the database. 1, 5, 10, 11, 19, 39, 61

Database Management System (DBMS)

A collection of programs used to store, modify, and retrieve information
from a database. 21

Extended Backus Naur Form (EBNF)

All EBNF constructs can be expressed in plain Backus Naur Form (BNF)
using extra productions. EBNF is more readable and succinct than BNF. 57

Enterprise Java Beans (EJB)

Enterprise JavaBeans (EJB) technology is the server-side component archi-
tecture for the Java 2 Platform, Enterprise Edition (J2EE) platform. EJB

xi

xii LIST OF ACRONYMS

technology enables rapid and simplified development of distributed, transac-
tional, secure and portable applications based on Java technology[14]. 24

Explicit Query Execution (EQE)
The queries to be performed on the RDBMS are stated in SQL within the
application, either as Embedded SQL or CLI. 5

ExactVM (EVM)
Derived from the classic Java Virtual Machine (JVM) to support research
into main-memory space management and garbage collection running enter-
prise servers under Solaris. 16

HotSpot (HotSpot)
HotSpot is the primary Java Virtual Machine (JVM) for desktops and servers
produced by Sun Microsystems[36]. It features techniques such as just-in-
time compilation designed to improve performance. 16

Hibernate Query Language (HQL)
HQL is an object query language used by the Hibernate framework[19]. 14–
16, 39

The International Organization for Standardization (ISO)
The mission of ISO is to promote the development of standardization and
related activities in the world. 19

Java Compiler (JavaC)
The Java Compiler tool reads class and interface definitions (source files),
written in the Java programming language, and compiles them into byte code
class files[25], which can then be executed on a JVM. 19, 24, 34, 51, 52, 56

Java DataBase Connectivity (JDBC)
JDBC is an API for Java that wraps CLI’s for several different databases.
JDBC is maintained by Sun Microsystems. vii, 1, 5, 10–12, 19, 20, 25, 61

Java Data Objects (JDO)
JDO is a framework for managing persistence within an EJB environment.
24

Java Data Objects Query Language (JDOQL)
The query language used by JDO. 39

Java Virtual Machine (JVM)
The Java Virtual Machine (or JVM) is a virtual machine, thus the name, that
executes Java byte code. 16, 17, 45

LIST OF ACRONYMS xiii

Language Integrated Query (LINQ)

Language integrated query (LINQ) is a Microsoft project that aims to add a
native querying syntax to C# and VB.Net. The feature can be applied to both
XML and relational database data sources. 24

Open DataBase Connectivity (ODBC)

A standard for an API that wraps CLI’s for several different databases, pro-
viding a common interface regardless of the underlying RDBMS. ODBC is
a standard co-opted by Microsoft from the SQL Access group consortium.
1, 5

Object-Relational (OR)

A term used to describe a mapping between a relational and an object-
oriented data model. 13, 24, 63

Plain Old Java Queries (POJQ)

A project[7] aiming to implement Native Queries[11]. 39

Query By Example (QBE)

A way of querying where a prototype is specified, and the result of the query
contains elements that match the given prototype. 22

Relational Database Management System (RDBMS)

Software systems that manage and store data organized by the relational data
model. See Abraham Silberschatz et al[2] for more verbose explanation. 1,
3–9, 11, 16, 35, 36, 49, 69

Structured Query Language (SQL)

SQL is a widely used language to query RDBMS. Provides constructs for
insert, update and deleting information in a RDBMS. 1, 3–5, 9–12, 14, 16–
19, 24, 25, 39, 42–44, 46, 51–59, 62

Three Letter Abbreviation (TLA)

A meta-acronym. As the name suggests, used to describe acronyms of length
three. v

eXtensible Markup Language (XML)

XML is a metalanguage written in Standard Generalized Markup Language
(SGML), which is defined by ISO standard 8879. 13, 15, 17, 33, 62

xiv LIST OF ACRONYMS

Chapter 1

Introduction

1.1 Setting the scene: “The Impedance mismatch”

This is the scene: on one hand, Relational Database Management System (RDBMS)
interfacable through the Structured Query Language (SQL), and on the other hand,
applications developed with widely adopted statically typed object oriented lan-
guages such as Java[23] and C#[12]. The problem we will be addressing in this
report is related to the problem of integrating databases and programming lan-
guages.

The problem has been dubbed “The impedance mismatch” by Maier[28] in
1990, and lately has been investigated extensively by Cook and Ibrahim in a as yet
unpublished article named “Integrating Programming Languages & Databases:
What’s the problem?”[9]. The term “The impedance mismatch” stems from elec-
trical engineering and is used to express how easily two systems are connected.

The most widely used method to connect programming language like Java to
RDBMS are currently Call Level Interface (CLI) like JDBC and Open DataBase
Connectivity (ODBC). Chosen mostly because they provide access to the databases
superior abilities to query data, support multiple simultaneous accesses to data
(concurrency), bulk data manipulation, etc. However, use of CLI lacks several
properties - static checking of queries, resistance to injection attacks, type mis-
match, etc.

Some work has been done in investigating the problems facing a solution to the
impedance mismatch problem. And even though there are many existing (partial)
solutions, all solutions seem to be deficient in some manner.

1.2 Outline

This report is divided in three chapters in addition to this. Starting with the Anal-
ysis, known criteria to evaluate solutions to the impedance mismatch problem are
described, and a number of existing solutions are reviewed. Exploring their weak
and strong points, a number of new criteria are identified. Prioritizing all of the cri-

1

2 INTRODUCTION

teria, we identify a subset of the impedance mismatch problem we want to solve,
and list selected design goals to a new solution.

Chapter 3 - Designing a solution - proceeds by developing the foundations for
a solution to the problem. During the design phase, a rudimentary prototype has
been developed, and Chapter 4 - Implementing a compiler prototype - describes
the envisioned compilation process and the actual implementation. Chapter 5 con-
cludes the project, and points to possible directions of future work.

Chapter 2

Analysis

In the following chapter we will try to lay out the problems - partly as they are
described in already published work. From these problems we will identify a set
of criteria from which a solution to the impedance mismatch problem can be eval-
uated.

We will also review existing solutions and approaches to integrating program-
ming languages and databases. This review is conducted to identify weak and
strong points of the existing solutions. These insights are then used to extend the
set of criteria to evaluate a solution to the impedance mismatch problem.

In the end of the chapter we will precisely identify a subset of the problem of
the integration, that we will try to solve - embodying the “Problem Statement”.

2.1 Identifying the issues

In this section, we will present a list of criteria to evaluate some particular solution
to the impedance mismatch problem. The presented criteria in this section stem
partly from those presented by Cook and Ibrahim[9]. In some cases however, we
identify the issues a little differently, and in these cases, it will explicitly be stated
as such. Although the descriptions of the issues may seem a bit verbose, it is
so to make the chapter readable without prior knowledge to the referenced work
concerning the impedance mismatch. Some knowledge regarding the relational
data model, SQL, and object-oriented programming in Java is, however, required.

2.1.1 Static Checking

The first issue to present is the ability to check code on compile time, rather than
having it generate errors at run time. We refer to this as static checking. Two
aspects are discussed in the following.

One area of static checking is static typing. Basically static typing is about
whether or not it is possible to make static type checking of the interactions be-
tween the programming language and the RDBMS. In essence this means that if

3

4 ANALYSIS

static type checking is present, it is possible at compile time to check whether there
are any type-related errors in the queries that are passed from the application to the
RDBMS runtime.

Another area is static semantic checking. Static semantic checking is whether
or not it is possible to check references to database tables from the programming
language at compile time.

An example of the lack of static type and semantic checking and the problems
this presents are presented in Figure 2.1. Imagine that we have set up a database
connection named conn and execute the SQL statement (line 2 and 3). The example
is based upon the common example in Appendix A. The example contains two
semantic errors, and one type error. In line 2, in the select statement, the table
person in the from clause is misspelled. In the same statement, a variable from the
relation (dep id) with the type integer is compared to a textual value. Both errors
will not be exposed before run time. In line 6, the application tries to retrieve an
integer from the result set - but the result set contains strings. This problem will
remain concealed until run time too.

1 Statement stmt = conn.createStatement();
2 String sqlQuery = "SELECT fname FROM parson " +
3 "WHERE dep_id = ’Peter’";
4 ResultSet rs = stmt.executeQuery(sqlQuery);
5
6 while (rs.next()) {
7 int departmentId = rs.getInteger("fname").intValue();
8 }

Figure 2.1: Demonstration of missing static checking

One solution to this problem could be to use SQLJ[35] or SQL DOM[29] to add
static type check to the development process. SQLJ is described in Section 2.2.5.
SQL DOM uses a object-oriented model to build the queries that are possible to
make - which can be verbose in large systems.

Recent work[17] has proved it possible to solve some of the static type check-
ing problems regarding dynamically generated queries. Although able to check
certain type properties, the analysis does not currently cover query parameters or
type-checking use of returned values.

Cook and Ibrahim[9] state that the static check criteria apply to all the other
criteria, as an extra dimension.

2.1.2 Interface styles

By interface styles we mean how the system developer interacts with the persistent
storage. In existing solutions this is a broad spectrum, ranging from orthogonal

2.1 IDENTIFYING THE ISSUES 5

persistence (described in Section 2.1.2.1) to Explicit Query Execution (EQE) (de-
scribed in Section 2.1.2.2).

Besides the issues that arise with each extreme, another issue applies to the in-
terface style: “Which paradigm?” Orthogonal persistence uses the syntax and se-
mantics of the “host” language - be it Java, C#, SML, PASCAL, PROLOG or like-
wise. EQE uses the syntax and semantics of the language inherent to the RDBMS
- SQL.

2.1.2.1 Orthogonal persistence

There does not exist a general definition of orthogonal persistence. We will define
orthogonal persistence as Malcolm P. Atkinson[5] defines it. He uses three proper-
ties that must apply for orthogonal persistence to work. These are described in the
following:

• Orthogonality - The persistence facilities must be available for all data, irre-
spective of their type, class, size or any other property.

• Completeness or Transitivity - If some data structure is preserved, then ev-
erything that is needed to use that data correctly must be preserved with it,
for the same lifetime.

• Persistence Independence - The source and byte codes should not require
any changes to operate on long-lived data. Furthermore, the semantics of the
language must not change as the result of using persistence.

2.1.2.2 Explicit Query Execution

EQE comes in two flavors. One is Embedded SQL and the other is CLI. Both styles
enable bulk data manipulation (updating many tuples with one SQL command),
explicit optimization, and fine-grained control with queries.

Embedded SQL (or Embedded Queries as it is sometimes referred to), is SQL
statements that are embedded into the host language, amending the syntax. The
statements are present at call time, effectively enabling static type checking, but
disabling dynamic queries - i.e. the ability to build queries dynamically during
application execution.

CLI is a quite prevalent solution. Examples of CLI are JDBC and ODBC. SQL
statements are sent to the RDBMS as textual, uninterpreted strings at runtime. CLI
enables dynamic queries, etc. On the other hand, CLI suffers from being subject
to injection attacks (having a user inject potentially harmful SQL statements when
building queries), static type checking is not possible - with the possibility of type
errors causing the application to misbehave at runtime.

Figure 2.2 shows an example of how SQL injection can occur. The problem
occurs if a malicious user sets fname to some arbitrary SQL - say for instance
;drop table person;. In this case the injected code would drop the person
table which is definitely not the intention from the developer.

6 ANALYSIS

1 public String updatePerson(int id, String fname){
2 return String sql = "UPDATE person SET " +
3 "fname = ’" + fname + "’ " +
4 "WHERE id = " + id.toString();
5 }

Figure 2.2: Example of SQL injection.

2.1.3 Type mismatch issues

The type system of a programming language usually does not correspond to the
types represented in databases. Even different databases can have dissimilar im-
plementation of data types, since there is no absolute definition of the precision
of numeric types[9]. The length of strings also varies between databases and pro-
gramming languages, which again lead to incompatibility between the two worlds.

Another issue is the interpretation of null values. Programming languages and
databases has a shared keyword null but it is interpreted different between the two.
In programming languages a reference can be a null reference, which means that it
has no target and therefore no value. In databases null values are seen as unknown
values. This difference in semantics needs to be taken into consideration when
dealing with null values.

Because the types between databases and programming languages are not di-
rectly comparable, we need to consider how data is mapped between the two
worlds. We refer to this as data mapping.

2.1.3.1 Data mapping

There are two aspects of data mapping between databases and programming lan-
guages. One is how to map primitive types where the main concern are to preserve
the precision of the data types. Another is how to map object types to the database.
An issue that is somewhat more complex than handling primitive types.

Primitive types Considerations on how primitive types from the programming
language can be stored in the database without the loss of precision needs to be
made. Integers and reals are an example of this. Depending on which RDBMS and
on which programming language chosen, there are slightly different value domains
for the common types (integers, longs, etc), and some primitive types might exist
in one but not the other - the varchar type is an example.

Object types Whereas primitive types have a fairly straight forward mapping of
types between programming language and the database, object types has not. An
object type can be anything from a rather simple string to an object with multiple
references of many to one, one to many or many to many. Another problem with

2.1 IDENTIFYING THE ISSUES 7

object types is how to compare two types. Ambler[3] has written extensively on
the matter, considering also how inheritance is mapped from object-oriented to
relational, and how relationships among objects can be modeled.

2.1.3.2 Interpretation of null values

As we have mentioned earlier having a null value from a RDBMS and comparing
it with a null value from an object-oriented language is not straight forward. First
we need to look at how the language and the database perceives the word null.

Programming languages such as Java perceives null as a null reference. In
Java a reference variable holds a null value until it is assigned an object. To il-
lustrate this, we have Figure 2.3. In line 2 a variable person is declared but not
assigned any value. It therefore holds a null reference. In line 3 a new object of
type Person is assigned the variable person which result in person no longer
being a null reference.

In other words a null value in Java is an undefined value.

1 . . .
2 Person person;
3 person = new Person();
4 . . .

Figure 2.3: Assignment in Java.

Databases uses null values in another manner. Null values in a database are
interpreted as unknown values and therefore are treated differently than in program-
ming languages. In a database aggregates etc. can be performed on null values -
having the RDBMS simply omitting null values. In a programming language this
will typically result in a null pointer error.

Since null values in a database is an unknown value a comparison will yield
an unknown answer - a null result. As a consequence hereof in a database age
= null will always return a null, even if age in fact is null. In contrast with
programming languages x == null will return true if x is a null reference.

2.1.4 Reuse

2.1.4.1 Query parameters

Query parameters are parts of the query that are parametrized, with the parameter
ultimately not known before runtime of the application. An example could be a
filter - a string matching parameter. The query here would then depend on one or
more input values.

8 ANALYSIS

2.1.4.2 Dynamic queries

Sometimes parameterized queries alone simply does not cut it - this is where dy-
namic queries come into hand. Different filters have different structures, and in-
stead of simply creating different parameter values, dynamic queries are used in-
stead.

Like parametrized queries, dynamic queries are built at run time. An example
would be that several filters may be added, tuples ordered, joins added, etc. at run
time. A wide spread use of dynamic queries appear in web applications, where the
dynamic query is constructed depending on user input.

2.1.4.3 Modular queries

Composition and decomposition of programming constructs are basic properties
of most high-level languages - and a solution to the impedance mismatch problem
should support this.

However, (de)composition of queries may have severe impact on optimization.
One of the strengths of the RDBMS is specifically optimization of the query based
on extensive knowledge of data topology, current CPU load, known indexes, etc.
This optimization becomes less doable if the queries are only sent in small chunks
to the database with many round trips.

2.1.5 Concurrency

Support for concurrency in databases respectively programming languages are mod-
eled distinctively different.

2.1.5.1 Transactions

In the database, concurrency is modeled with the concept of transactions. Sev-
eral clients may compete for access to shared resources - the relations - grouping
one or more interactions with the RDBMS into transactions. These transactions
are then by the RDBMS guaranteed to fulfill the ACID properties (as defined by
Silberschatz et al[2]):

Atomicity Either all operations of the transaction are reflected properly in the
database, or none are.

Consistency Execution of a transaction in isolation (that is, with no other transac-
tion executing concurrently) preserves the consistency of the database.

Isolation Even though multiple transactions may execute concurrently, the system
guarantees that, for every pair of transactions T1 and T2, it appears to T1 that
either T2 finished execution before T1 started, or T2 started execution after T1

finished. Thus, each transaction is unaware of other transactions executing
concurrently in the system.

2.1 IDENTIFYING THE ISSUES 9

Durability After a transaction completes successfully, the changes it has made to
the database persist, even if there are system failures.

2.1.5.2 Threading

A programming language such as Java has the concept of threading - which can
be compared to the databases transactions. A thread is a single sequential flow of
control within a program. This means that a system developer can use threads to
isolate tasks.

Each thread is a sequential flow of control within the same program. This
means that each thread can run independently from the other threads, but at the
same time.

As with transactions, a thread has a beginning, then a sequence of operations
followed by an ending. Threading makes it possible to run more than one instance
of an application at a time.

All the threads of a Java program operate on the same memory, and exclusive
access to resources is achieved using synchronization locks on objects and classes.

2.1.5.3 Evaluating concurrency

The model of concurrency in programming languages like i.e. Java, does not guar-
antee any fulfillment of the ACID properties. Many solutions to the impedance
mismatch problem provide some way of starting, committing and aborting transac-
tions. The problem is, however, that two executing threads may use the same con-
nection to a database, and interleaving interactions to the database. The database
sees only one connection with one transaction, but within the running application
this may be two distinct flows of execution, and the ACID properties no longer
hold.

2.1.6 Optimization

As mentioned before, one of the tasks that a RDBMS is particularly good at, is opti-
mization of query execution. This involves rearranging query operations, choosing
which indexes should be used to select particular tuples, etc.[16]

In the following, we divide the issues by search and navigational issues - re-
sponding largely to the WHERE and SELECT parts of an SQL query. Lastly, we
consider optimization issues in data manipulation (INSERT, UPDATE, DELETE).

2.1.6.1 Optimizing search - Criteria shipping

Query optimization is performed by most RDBMS. It is based upon the databases
knowledge about how data is stored, available memory etc. This knowledge is not
available to the programming language. Therefore a mechanism to gather criteria
from a query is needed, so that it can be passed to the RDBMS at runtime.

10 ANALYSIS

2.1.6.2 Optimizing navigation

Prefetching related objects When translating the relational data model to the
object model, foreign keys in tuples become references between objects. When
querying the database, it is an issue how the referenced objects get loaded. Follow-
ing the references blindly may cause loading of a very large object graph, although
it is never needed by the application. However, if no prefetching is done the result
may be that the database is queried many times - reducing performance[6].

There are several degrees of solution present for this issue. In the most ex-
treme, CLI forces the system developer to define how much data is loaded - giving
the system developer explicit control. Some object relational tools do not enable
navigational prefetching at all, some enable global settings, and some even allow
for query specific settings, although these seem cumbersome to specify.

2.1.6.3 Bulk data manipulation

A general trait of the optimization issues is whether queries are grouped and shipped
to the database engine in large portions.

This also applies to data manipulation operations - i.e. INSERT, UPDATE,
DELETE statements. In SQL it is possible to define data manipulation to a set
of tuples defined by some criteria - e.g. moving all persons from department 1 to
department 2: UPDATE person SET dep id = 2 WHERE dep id = 1.

Performing the same operation by loading all the objects into the application
and then modifying the department id (dep id) on each member and finally updat-
ing each object in the database greatly degrades performance.

2.2 Reviewing Existing Solutions

In the following section we will present a review of several existing solutions to the
impedance mismatch problem. Each of the solutions we review, are representatives
of different approaches to solving the impedance mismatch problem.

Each of the reviews will start with a brief introduction of the solution. Then
we will outline how a solution to the common example in Appendix A would
look like using this particular solution. Specifically with respect to setting up the
environment, how to store objects, and finally how to perform queries. Ultimately,
there will be a listing of the weak and strong points of the solution - either evaluated
by the criterion already put forth - or given that neither of them are applicable,
introducing a new criteria.

2.2.1 JDBC

Java DataBase Connectivity (JDBC) is a number of Java classes and interfaces
that specify an Application Programming Interface (API) that a driver for a spe-

2.2 REVIEWING EXISTING SOLUTIONS 11

cific RDBMS should implement. The provided API enables sending queries to the
database, and retrieving results from the queries.

JDBC is a CLI, which means that communication with the database is uninter-
preted strings. There is no automatic mapping and conversion between objects and
tuples, but instead it is the system developer that is responsible for the mapping.

2.2.1.1 Setting up the environment

Setting up a JDBC connection requires two steps. One is to load the driver and
the other is to make the actual connection. Figure 2.4 illustrates a connection to a
MySQL[31] database called somedb.

1 Class.forName("com.mysql.jdbc.Driver");
2 Connection con = DriverManager.getConnection(
3 "jdbc:mysql://localhost:3306/somedb",
4 "user",
5 "password");

Figure 2.4: Setup of JDBC connection.

2.2.1.2 Storing Objects

Once the connection has been established, it is time to utilize it. Retrieving objects
from the database is done using a SQL statement directly embedded in the source.
Figure 2.5 illustrates this.

1 Statement stmt = con.createStatement();
2 String fname = "Peter";
3 stmt.executeQuery(
4 "INSERT INTO person (id, fname, lname, dep_id)
5 VALUES (’’, ’" + fname + "’, ’Madsen’, ’1’);");

Figure 2.5: Storing objects with JDBC.

2.2.1.3 Querying

The difference between storing and querying is that a query returns a ResultSet. A
ResultSet is a table of data representing the database result set. It provides getter
methods for retrieving columns values. An example of this is illustrated in Fig-
ure 2.6 where we invoke two getter methods called getString() and getInt().

12 ANALYSIS

1 Statement stmt = con.createStatement();
2 ResultSet rs = stmt.executeQuery(
3 "SELECT * FROM person
4 WHERE fname = ’Peter’ AND dep_id = 1");
5 while (rs.next()) {
6 String fname = rs.getString("fname");
7 int depId = rs.getInt("dep_id");
8 . . .
9 }

Figure 2.6: Querying objects with JDBC.

2.2.1.4 Evaluation of JDBC

JDBC implements SQL as uninterpreted strings in the programming language.
This means that there is no static checking on types nor is it possible to check
for spelling errors in column names etc.

The actual mapping of objects to tables must be done the system developer,
and can be a tedious task if the database schema changes on a regular basis.

Optimization and bulk data manipulation can be done with fine-grained control,
as the system developer has the power of SQL right at hand. JDBC allows SQL
statements to be grouped together into a single transaction and can thereby fulfill
the ACID properties. The transaction is controlled by the Connection object
which means directly implemented by the system developer.
Pros

• Support for transactions through the JDBC driver.

• Support for bulk data manipulation and optimization.

• Explicit declaration of SQL statements - full support for SQL statement.

Cons

• Tedious to implement persistence.

• No support for static type checking or typos in the SQL statements.

• No direct mapping between the relational data model and the object-oriented
model.

• Explicit declaration of SQL statements.

• Vulnerable to script injection.

2.2 REVIEWING EXISTING SOLUTIONS 13

2.2.2 Hibernate

Hibernate is a framework, which somewhat automates the task of mapping Java
objects to a relational database. Hibernate handles one-to-one, one-to-many and
many-to-many relations. These relations are defined in eXtensible Markup Lan-
guage (XML) files called mapping files, thus not completely eliminating the te-
dious task of mapping between the object-oriented paradigm and the relational
database.

2.2.2.1 Setting up the environment

Hibernate uses mapping files, that are XML files written by hand. This leaves room
for mistakes that can compromise the correct mapping between the database and
the programming language.

These mapping files contains all information about Object-Relational (OR)
mapping such as primary key, foreign key and database attribute.

To illustrate this mapping, we use the database example from Appendix A. In
this example (see Figure 2.7) it is easy to see that it is still possible to make typos
in i.e. table names. The example shows what is needed to connect to a database
using Hibernate.

1 <hibernate−mapping>

2 <class name="Person" table="person">

3 <id name="id" column="person\id">

4 <generator class="increment"/>
5 </id>

6 <property name="fname"/>
7 <property name="lname"/>
8 <property name="dep_id"/>
9 </class>

10 </hibernate−mapping>

Figure 2.7: Hibernate mapping file.

Once the mapping files exist, Hibernate delivers many tools for manipulating
the database. The Hibernate framework include tools for:

• generating Java classes from existing mapping files.

• generating mapping files from existing database tables.

• generating database tables from existing mapping files.

As you can see, one of the tools have support for generating mapping files from
an existing database, thus eliminating the hand written error that might occur.

14 ANALYSIS

Hibernate uses mapping files to directly describe which columns belong to
what table, and what table is related to what database - in case more than one
database is in use.

The Hibernate framework is situated between the application and database. It
creates a tier between the two. This is illustrated on Figure 2.8.

hibernate.properties XML Mapping

Database layer

Application layer

Persistent objects

Hibernate framework

Figure 2.8: Hibernate architecture (source: hibernate.org).

2.2.2.2 Storing objects

Hibernate offers a persistence manager that handles storing and retrieving objects
from the database. In the Hibernate framework this is called a session. Each session
contains a transaction, where it is possible to make a rollback or commit as known
from the database world. When the persistence manager, or session, is set up,
objects can be stored in the database, as shown in Figure 2.9.

From this example it is easy to see that once the object should be persisted, it
is done using the session.save(person). Finally, the entire transaction need
to be committed as if it was a database. This is done using tx.commit().

2.2.2.3 Querying

Hibernate implements its own query language called Hibernate Query Language
(HQL)[20] that is an object-oriented query language. Furthermore SQL native to
the used database can be used.

A Hibernate session has a createQuery method, that can be used to query
the database. An example of a query in HQL can be seen in Figure 2.10.

2.2 REVIEWING EXISTING SOLUTIONS 15

1 Session session = HibernateUtil.currentSession();
2 Transaction tx = session.beginTransaction();
3
4 //Create our example object
5 Person person = new Person();
6 person.setFName("Peter");
7 person.setLName("Madsen");
8 person.setDepId(1);
9

10 session.save(person);
11 tx.commit();
12 HibernateUtil.closeSession();

Figure 2.9: Storing objects in Hibernate

1 Query query = session.createQuery(
2 "SELECT p FROM person AS p WHERE p.lname = :lname");
3
4 query.setCharacter("lname", ’Madsen’);
5
6 for (Iterator it = query.iterate(); it.hasNext();) {
7 Person p = (Person) it.next();
8 //Handle your query result here. . .
9 }

Figure 2.10: Retrieving objects in Hibernate.

Furthermore, HQL can handle filters through a createFilter method on
session. Aggregate functions can be handled through scalar results. Scalar results
are considered ”scalar” since they are not entities in persistent storage.

2.2.2.4 Evaluation of Hibernate

Problems with mismatch between the type system of the database and the program-
ming language, is still existing but can be handled by the user through the XML
mapping files. This is a manual task, since types of the database does not match
the types of the programming language.

Hibernate supports transactions, though this has to be implemented manually
by the system developer. Hence concurrency can be obtained, but the system devel-
oper needs knowledge about the underlying database system. One of Hibernates
key features is a cache architecture, that can be used in a cluster environment to
enhance performance.

Last Hibernate offers a more automated implementation of tedious database
mapping, though manual labor is still needed.

16 ANALYSIS

Pros

• The system developer is relieved of writing trivial methods to save objects to
persistent storage, and to marshall primitive values from tuples into objects.

• Handles data mapping (once the mapping files are in place, and only when
they are correct).

• The RDBMS does not need to be present at compile-time.

• Optimization through caching.

• HQL is closer to the object-oriented paradigm than SQL.

Cons

• Although HQL is closer to the object-oriented paradigm, it is still influenced
strongly by SQL.

• A somewhat manual mapping between database and programming language.

• No static typing.

• A lot of work is needed to set up the tool.

2.2.3 PJama

PJama[33] was developed by Sun Microsystems[36] and Glasgow University in the
years 1996-99 after which it was aborted. PJama was an experiment to fully im-
plement orthogonal persistence in the language Java. Unfortunately for the PJama
team, they choose to use ExactVM (EVM) instead of HotSpot (HotSpot), which,
at the time was a new and sophisticated Java Virtual Machine (JVM). EVM was
abandoned in the summer of 1999, which also meant that the PJama project was
abandoned.

2.2.3.1 Setting up the environment

Although PJama has been abandoned, it is still possible to get it to work. The latest
version is 1.65 and was updated in October 1999[4].

PJama implements persistence independence (see Section 2.1.2.1) to such a
degree that there is no change in semantics - the only thing needed is very few
lines of code that explicitly call the PJama API to set up the application.

2.2.3.2 Storing objects

Due to the nature of orthogonal persistence, there is no need to explicitly store
objects.

2.2 REVIEWING EXISTING SOLUTIONS 17

2.2.3.3 Querying objects

As with storing, there is no need for explicitly querying.

2.2.3.4 Evaluation of PJama

Although PJama has been abandoned it has not all been in vain. PJama has had
some great achievements, which will we discuss briefly here.

First of all, PJama has been a proof by case even though it never was completed.
The PJama team have shown the world that it is possible to implement a language
that is orthogonal persistent. They made a demo that showed the ability to stop and
start a Swing[23] demonstration - preserving the interactive state[5].

As already mentioned, they achieved persistence independence. The crew also
tested scalability with up to 10 Gbytes of data and more than 300 million objects
- and recall that this was in the early 1999. They even supported virtually any
changes to the definitions of classes (also known as schema evolution).

Transactions is an area of PJama that is considered tricky and hard to imple-
ment. Since storing objects is done automatically by the JVM it is necessary for
the system to guarantee that a transaction does not overlap checkpoints, where the
JVM stores objects. If this happens, the system could end up in a inconsistent state.
This problem, is yet to be solved by the developers of PJama.

Pros

• Schema evolution.

• Transparent persistence.

Cons

• Changed the JVM.

• Lack of transactions.

• The power of relational databases is missing.

2.2.4 Cω

Cω is a experimental version of the C# programming language and is developed by
Microsoft Research[30]. While some of the features of Cω have been incorporated
into C# version 3, Cω remains a development language.

Cω amends C# with the aim to implement natural language abstractions work-
ing with relational data and XML documents[15]. Cω offers type check on SQL
queries on the same level as on types in the programming language, given that
SQL syntax is amended to the rest of the language - it is integrated into the host
language.

18 ANALYSIS

2.2.4.1 Setting up the environment

When dealing with a Cω project that uses SQL, the database that the application
has to work on has to be present. From the database, the Cω compiler infers the
necessary information to be able to make static checking of the code.

2.2.4.2 Storing objects

Figure 2.11 shows how a tuple is inserted into a relation. As you can see, the
SQL syntax of the example is part of the language on equal terms with the object-
oriented syntax. Semantic checks and type checks are done at compile time.

1 public class StorePerson {
2 static void Main() {
3 int n = INSERT id = "", fname="Peter" INTO DB.Person;
4 . . .
5 }
6 }

Figure 2.11: Storing objects with Cω.

2.2.4.3 Querying

Figure 2.12 shows an example of a query. Like the insert, the query is part of the
language. The result of the query is a resultset - an iterator, with structs containing
the variables of the resulting tuples. This also shows that there is no conversion
from tuples to objects and vice versa.

1 public class RetrievePerson {
2 static void Main() {
3 . . .
4 res = SELECT * FROM DB.Person WHERE fname=="Peter";
5 foreach(row in res) {
6 Person p = new Person();
7 p.setFName(row.fname);
8 . . .
9 }

10 }
11 }

Figure 2.12: Retrieving objects with Cω.

2.2 REVIEWING EXISTING SOLUTIONS 19

2.2.4.4 Evaluation of Cω

Since Cω implements SQL directly in the programming language, search opti-
mization and bulk data manipulation can be done with just as fine-grained control
as with CLI.

A strong aspect of Cω is the static checking system, eliminating many potential
run time errors. Moreover, the type mismatch issues are handled by the compiler.

Cω has built-in language constructions for transaction handling, thus making
concurrency programming possible with the ACID properties intact.

What Cω does not do, is converting tuples to objects, references to collections,
and vice-versa. This task is still the responsibility of the developer.

Pros

• Support static type checking on SQL queries.

• Support for concurrency integrated by language constructions.

Cons

• No mapping between the relational data model and the object-oriented model.

• The original object-oriented language is extended with at new paradigm
given that SQL syntax is integrated directly into the language - this gives
the programmer more expressiveness, but also a larger language to master.

2.2.5 SQLJ

SQLJ is a set of programming extensions invented by large corporations including
Oracle[32], Sun Microsystems[36] and IBM[22]. It is a The International Orga-
nization for Standardization (ISO) and The American National Standards Institute
(ANSI) standard. It allows a programmer using Java to embed statement that pro-
vide access to a SQL database. SQLJ defines the embedding of static SQL state-
ments in a Java program. An expression written in SQLJ is usually more compact
and readable than an equivalent expression using JDBC.

A program written with SQLJ cannot be compiled by Java Compiler (JavaC),
since the syntax is not valid Java syntax. The SQLJ uses a translator to create valid
SQL statements. It uses #sql to identified the presence of SQL statements. It uses
: to indicate the presence of Java attributes inside the SQL statement.

2.2.5.1 Setting up the environment

SQLJ consists of two components: the translator and the runtime libraries. So, in
order to get SQLJ to work, you need to get the following:

• Oracle SQLJ translator.

• Oracle JDBC driver.

20 ANALYSIS

• Oracle database.

As you might have noticed, SQLJ uses Oracles translator, JDBC driver and
database. It is also have used IBM’s database called DB2. At the time of writing
there does not exist any support for other databases like for instance MySQL[31]
or PostgreSQL[34].

Creating access to the database is done as you do with JDBC. This is illustrated
in Figure 2.13.

1 Oracle.connect(
2 "jdbc:oracle:thin:@localhost:1521:persijdb",
3 "user",
4 "password"
5);

Figure 2.13: Initialization of SQLJ

2.2.5.2 Storing objects

Once more we return to our example database from Appendix A. Once more, we
are trying to insert a person into the database. This is illustrated in Figure 2.14.

1 String fname = "Peter";
2 #sql {
3 INSERT INTO person (fname) VALUES (:fname)
4 };

Figure 2.14: Storing data with SQLJ

2.2.5.3 Querying

Retrieving objects is done in a similar fashion. This is shown in Figure 2.15.

2.2.5.4 Evaluation of SQLJ

One good thing about SQLJ is the support for static type checking. This means that
typos can be caught on compile time rather than on runtime as it does with regular
JDBC.
Pros

• Supports static type checking.

• Transactions through Java threading.

2.2 REVIEWING EXISTING SOLUTIONS 21

1 //Declare an instance of the SelRowIterator
2 SelRowIter result = null;
3 String fname = "Peter";
4 #sql result = {
5 SELECT * FROM person WHERE fname = :fname
6 };
7
8 //Populate the iterator and process all rows returned
9 while(result.next()) {

10 fname = result.fname();
11 . . .
12 }

Figure 2.15: Retrieving data with SQLJ

Cons

• No support for dynamic queries.

• No support for system developer to optimize the queries. This is done by
SQLJ on compile time.

2.2.6 db4objects

db4o[13] is an object-oriented database. It comes in a version for C# and in a ver-
sion for Java. In the newest version of db4o, version 5, Safe Query Objects[10]
are implemented according to “Native Queries for Persistent Objects, a design
whitepaper”[11]. In the following, examples are in Java 1.5 syntax, but equiva-
lent examples are possible in C#.

2.2.6.1 Setting up the environment

The db4o API does not require the programmer to mark the classes as persistent,
nor does it require any mapping files.

The Database Management System (DBMS) in db4o can operate in a “lo-
cal” mode accessing a database file, but not requiring a database daemon, or in
client/server mode. The code in Figure 2.16 sets up access to the database file.

2.2.6.2 Storing Objects

Figure 2.17 is a small example showing how to store objects in the database using
the db4o API. Using Appendix A as a starting point, we are creating a new person
with the name “Peter” and storing the object in the database.

22 ANALYSIS

1 private Starter(){
2 new File(dbfile).delete();
3 db = Db4o.openFile(dbfile);
4 try {
5 //database interaction here. . .
6 } finally {
7 db.close();
8 }
9 }

Figure 2.16: Initialization and utilization of db4o.

1 private void storeObjects() {
2 Person person = new Person();
3 person.setFName("Peter");
4 db.set(person);
5 }

Figure 2.17: Storing objects in db4o.

2.2.6.3 Querying

Queries can be undertaken in three ways in db4o. One is through Query By Exam-
ple (QBE), another is Query API and the third is by using Native Queries.

Since db4o uses an object-oriented database, Native Queries become interest-
ing. Since there is no mapping between the database and the programming lan-
guage, Native Queries is to be able to express the queries to the database using
the normal syntax and semantics of the host language. Figure 2.18 shows a simple
example of a native query.

1 private void retrieveObjects() {
2 ObjectSet person = db.query(
3 new Predicate<Person>() {
4 public boolean match(Person person)
5 return person.getFName().equals("Peter");
6 }
7);
8 }

Figure 2.18: Using native queries in db4o.

db.query(Predicate predicate) is the method that does the actual query-
ing. It returns an instance of ObjectSet which basically is an iterator. Predicate

2.2 REVIEWING EXISTING SOLUTIONS 23

is an abstract class which includes the signature public abstract boolean
match (ExtentType candidate); which (according to the semantics of an ab-
stract member) must be implemented in the actual parameter. Consequently new
Predicate<...> {...} is written in the query method.

The purpose of the match method is to evaluate whether the actual parameter
candidate is to be included in the set of objects being returned - if so, to return true,
and if not, to return false.

This way, the implementation of the match method can use the instance of the
object to test whether the desired criteria are fulfilled.

Given that all the tests are expressed in the host language, the queries are sub-
ject to the same level of type checking as the rest of the application. Moreover, the
queries are not subject to script injection problems.

2.2.6.4 Evaluation of db4o

Queries in db4o are expressed in natural Java syntax. Because of this, database
calls does not break with the object-oriented paradigm. On the other hand, because
of the nature of the match-method, we loose the relational power like aggregate
functions (MAX, MIN etc.) and the cost of this is perhaps a decreasing efficiency.

Notice, although we state that there is little or no room for optimization, we
have not been able to find some concluding evidence for this statement, but taking
into account that db4o’s focus is on persisting objects and not directly on perfor-
mance. If the purpose of the application is to request and manipulate primitive
values instead of objects most of the time, then db4o is not the best choice for the
application, if optimization is in focus.

Pros

• Supports static typing.

• Uses the programming languages syntax (Java or C#).

Cons

• Not orthogonal persistence.

• No or little room for optimization.

• Concurrency is handled manual.

2.2.7 Other Solutions

The solutions presented so far, are all exponents for some particular flavor of the
wide range of solutions to the impedance mismatch problem. In the following
section we present some of the other solutions we have encountered during our
research.

24 ANALYSIS

2.2.7.1 Object-Relational Mapping Frameworks

• TopLink[37] is an OR mapping package for Java. It is a commercial product
owned Oracle in 2003.

• Enterprise Java Beans (EJB) is an API in the Enterprise Edition of the Java
2 Platform. Among other things, EJB provide persistence.

• Java Data Objects (JDO) is a specification of Java object persistence. It is
made by Sun Microsystems and is also implemented by others including
JPOX[26] and Castor[8].

• iBATIS[21] is a Data Mapper framework for Java and .NET applications.

• Language Integrated Query (LINQ)[27] is a set of extensions to the .NET
Framework that encompass language-integrated query, among other.

• Another project group in Aalborg University is currenctly also looking at the
impedance mismatch problem - using C# as their choice of language.

2.3 Discussion

In this section we will summarize the criteria used throughout the analysis. Going
through the existing solutions we have also found some new criteria, which we will
also discuss. This discussion then leads to the problem statement in Section 2.4.

2.3.1 Conclusion on review

When going through the reviews we found some new criteria worth looking at.
They are listed in the following.

Build process focuses on how cumbersome the introduction of the framework
or language extension becomes. For instance take Hibernate (see Section 2.2.2).
Setting up Hibernate can be a tedious task where mapping is done manually, but
once the mapping is done, the framework ease the task of interacting with the
database. Also, how complicated the compilations process is.

Tool support applies to whether or not there exists tools to support the devel-
opment. For instance, working with SQLJ (see Section 2.2.5) Java code that is not
compilable with JavaC is created. This adds another step to the build process - here
we need a translator that translate SQLJ to compilable Java code.

Language alteration can be seen as language extension. Take Cω (see Sec-
tion 2.2.4). Here the developer needs to learn a whole new syntax, since SQL is
written directly inside the code. In fact, Cω and SQLJ adds elements from another
paradigm - the declarative paradigm. This greatly increases the developers learning
curve.

2.3 DISCUSSION 25

Schema evolution is an expression of how well changes in the object model
is transferred to the underlying database schema. Although PJama never was im-
plemented fully, it handles this whereas a JDBC solution does not handle this at
all. All changes made in the object model will need to be modified in the SQL
statements.

2.3.2 Summarizing criteria

In Table 2.1 we have summarized all the criteria we found during analysis including
a little description of each of the criteria.

Name Description
Static checking Having static checking is a huge advantage

for the system developer. Static checking en-
ables the ability to check code at compile
time, type as well as semantics. This greatly
decreases the risk of encountering run time er-
rors.

Interface style Interacting with the database either through
SQL or the host language is something that
need to be considered. Some existing so-
lutions to the impedance mismatch problem
breaks with the object-oriented paradigm thus
ending up as a multi paradigm language. The
level of persistence should also be taking into
account.

Type mismatch issue Either the problem of matching the type sys-
tem from the programming language to the
database is handled directly by the system de-
veloper (i.e. in JDBC) or it is handled by the
framework or language extension (i.e. with
Hibernate once it is up and running).

Reuse To what extent it is possible to reuse parts of
the query in different contexts.

Concurrency To what extent the application supports cur-
rency and to what degree it supports the ACID
properties.

continued on next page

26 ANALYSIS

continued from previous page

Optimization Whether or not the system developer should
be able to do optimization. This could be
through prefetching related objects.

Build process Introducing either a new framework or lan-
guage extension the build process cycle can
vary greatly. PJama has little or no extra build
steps whereas SQLJ adds the need to run a
pre-compiler

Tool support To what extent there is tools that support the
framework or language extension.

Language alteration How many, if any, changes are there made to
the host language. In Cω another paradigm
is introduced. PJama does not add any new
syntax.

Schema evolution To what extent changes in the database
schema is handled by the framework or lan-
guage extension.

Table 2.1: Summarizing criteria from the analysis.

2.3.3 Prioritizing criteria

Now that all the criteria has been described and we have looked at the criteria in
context to different frameworks and language extensions, it is now time to prioritize
them.

2.3.3.1 Criteria in focus

Static checking The ability to perform static checking is desirable. Having the
power to catch errors at compile time instead of at run time would greatly increase
the stability of programs, and must be seen as an important feature.

Type mismatch issue Another great concern is the issue regarding mapping
objects between a programming language and a database. Having the language
or framework handling this possible mismatch would relieve the developer of a
tedious work task. Along with static checking this increases the robustness of
database interaction.

2.3 DISCUSSION 27

Language alteration Having a framework or language extension that is intuitive
and easy to use is also something we would like to have. This makes it more easy
for the system developer to use the new functionality. If it is possible to keep
it completely within the host language (i.e. like PJama) this makes it even more
simple to use and learn to use.

Reuse Having the power of dynamic queries is another aspect, that seems im-
portant in interacting with a database. This makes it easier to extend and change
existing queries.

Interface style Letting the system developer interact with the database in a natu-
ral way is preferable. This means that the extent of our changes to the host language
must be homogeneous with the values and underlying thoughts.

Build process The build process should be kept as simple as possible. Adding
new steps to the build process could influence the appearance of the language in a
negative way. Simplicity seems to be a key aspect.

Optimization - criteria shipping and search Separating dynamic criteria from
the query’s static form, and implementing mechanisms to support navigational
prefetching will be in focus.

2.3.3.2 Criteria not in focus

Optimization - bulk data manipulation Executing bulk data manipulation us-
ing selection predicates will not be in focus.

Schema evolution This is not in our scope. How is changes in our object model
or in the database schema to be handled? There are different approaches to this
question in the reviewed solutions but it does not have a straightforward answer.
Although this is an important feature, we leave this is up to future work.

Concurrency Although any solution striving to solve the impedance mismatch
surely should handle concurrency problems, we choose not to do so - for know.

Neither in the sense that between loading objects from persistent storage and
storing them again, they might be altered, and the state of the objects loaded into
the application no longer are identical.

Nor in the sense that the concurrency constructs in programming languages do
not match the concurrency constructs in databases - and that having more than one
executing thread in an environment with one or more connections to a database can
give non-deterministic behavior.

However, providing support for concurrency is not in focus due to the limited
scope of the project.

28 ANALYSIS

Tool support Once an idea has been designed and realized, it would be time to
look at tool support. Tool support will therefore not be in focus in the project.

2.4 PROBLEM STATEMENT 29

2.4 Problem statement

The goal of the project is to demonstrate how persistence using a relational database
can be integrated into a statically typed object-oriented language, while keeping the
following language design goals in mind:

Assimilation The support for persistence should be integrated in the host language
in such a fashion that new language syntax and semantics conform with the
paradigm of the host language, and that there are not introduced any new key
abstractions.

Partial persistence The support for persistence should not be orthogonal, but rather
require the system developer to decide which elements that are to be per-
sisted.

Statically checked Queries to the database should be statically checked.

Minimal alteration The syntactic addition to the object-oriented host language
should be as small as possible, to ease the acquisition of the required skills
to use the language.

Performance Queries are to be passed to the database engine in such a fashion
that the database engine is able to optimize queries.

2.4.1 Method

A solution to the impedance mismatch solution potentially consists of parts resid-
ing in different parts of an application environment. Some parts might be language
modifications (syntax and semantics) and some might be parts of a new API.

While the ultimate goal of this project is to design a solution to the impedance
mismatch problem satisfying all of the criteria found to be relevant, the ambition
for this project is a little less ambitious.

During the course of the rest of this report, we wish to develop a foundation for
a solution, exploring different solution approaches to different parts of a solution.
Some of the work is done by investigating existing work, and some is supported by
implementing prototypes. The implementation process is undertaken to encounter
problems and expose hard-to-solve areas. The goal of the prototypes is therefore
not to produce a usable solution, but rather to assist the design process.

Developing the solution, we divide the solution into different parts. The first
part, identifying persistable types, is a necessity dictated by the partial persistence
design goal from the problem statement. From this part, we proceed by designing
the following parts:

Mapping the object-oriented model to the relational model When dealing with
relational databases and object-oriented programming languages, we need to
identify how mapping between the two abstraction models is handled.

30 ANALYSIS

Querying Some way of expressing queries that retrieve objects based on selection
predicates

Data manipulating How are objects stored in the database? How are they deleted?

When developing each of the parts, we consider different approaches. The
approaches either: Originate from existing solutions mentioned in Section 2.2, are
described in existing literature, or are principal approaches to the solution.

Each of the approaches are evaluated either with regard to the criteria set forth
in Chapter 2, or to the inherent properties of the approaches.

The foremost task however, is to reduce the scope of the problem.

Chapter 3

Designing a solution

3.1 Introduction

In this chapter a solution to a subset of the problems proposed in Section 2.4 is
designed. The solution is an extension the programming language Java. The first
section presents the method by which the solution is designed. Due to the limited
time frame of the project, the scope of the problem is reduced (Section 3.2). Then
we will have a look at how we can identify the persistable types (Section 3.3). After
this, we will be looking at the mapping from objects to relations (Section 3.4) and
querying (Section 3.5). Finally we will be discussing how we can manipulate data
(Section 3.6).

3.2 Focus of the solution proposal

In this section we will be reducing scope of the problem defined in Section 2.4. We
will be doing this by making some choices based on the focus of the project.

3.2.1 Extend an existing language, or build a new one?

Given that we want to solve the impedance mismatch problem for a statically typed
object-oriented language, we might choose to either extend an existing language,
or design a new language.

Although designing a new language would provide with the possibility to de-
fine all the semantics of object behavior upon creation, deletion, etc., the task of
defining a whole language is to big a task given the scope of the project. Given that
the focus of the project is to provide a solution to the impedance mismatch prob-
lem, and not present a better incarnation of an object-oriented language, it seems
more relevant to focus on the parts concerned to persistence.

Both Java[23] and C#[12] seem to be good candidates as languages to extend.
They are statically typed, well-documented, and widely used languages.

31

32 DESIGNING A SOLUTION

We have decided to use the programming language Java as the language, we
want to extend. Java was the choice, because this is the language the project group
has the most experience with. It could just as easily have been C#, but since no
member of the team has any experience with C# we choose Java.

3.2.2 Working with legacy database schema’s or not?

To reduce the scope of the solution, as a first approach, we do not work with legacy
database schema’s. Although it is indeed a valid aspect of the problem whether
a solution is able to operate on a data schema that is defined separately from the
given application, the starting point for our solution will be in a database schema
that is generated from the type system (e.g. the classes) in the application.

This approach gives some advantages regarding simplifying the compilation
process. Given that the database schema can be inferred from the type system, the
actual database does not need to be present at compile time. Moreover, mapping
issues between the object-oriented model and the relational model are simplified.

3.2.3 Naming the baby

Not wanting to keep the reader in undue suspense, we reveal the name of our
language without further ado: PersiJ .

3.3 Identifying persistable types

Given that we identified that the solution should support partial persistence, there
needs to be some way to distinguish non-persistable types from persistable types.

If the classes are marked as persistent through the original syntax of the lan-
guage, it is possible to make runtime reflection as to whether they are persistent or
not, and the compiler can verify that the marking is correct.

In the following we sketch different approaches, presenting advantages and
disadvantages of each approach. Our examples are based on the class Model, which
may extend some other class, as sketched in Figure 3.1.

1 //extends modifier optional (denoted by square brackets)
2 public class Model [extends SomeClass] {
3 // class body
4 }

Figure 3.1: A simple model class.

3.3 IDENTIFYING PERSISTABLE TYPES 33

3.3.1 Inheriting from a superclass

The first, and maybe somewhat naive approach just extends a superclass common
to all classes that are to be persistable. Figure 3.2 illustrates this.

1 public class Model extends PersistentRoot {
2 // class body
3 }

Figure 3.2: Extending a common superclass.

This approach, although simple, has several drawbacks: Since Java only allows
a single class to be inherited, this approach makes it impossible for the Model
class to inherit from another class. If there at some point arises a need for sub
classing Model, the subclasses will also be persistent - which is not necessarily the
intention. The semantics of inheriting to and from persistable classes is discussed
in more detail in Section 3.4.2.1.

3.3.1.1 Semantics of persistent members when inheriting

In Java, the semantics of inheritance are well-defined. Introducing persistable
classes, it becomes unclear how inheritance is handled.

3.3.2 Implementing an interface

Another approach is to make an interface - in this case Persistable. The class
or classes that need to be persistent should then implement this interface, as Java
allows for multiple interfaces. This is actually the same approach as Java uses with
the Serializable interface (which marks the class as being able to be serialized
- i.e. to disk). Figure 3.3 illustrates this idea which is also known as a marker
interface[23].

1 public class Model implements Persistable {
2 // class body
3 }

Figure 3.3: Implementing an interface.

3.3.3 Using meta data

Another approach is to decorate the source code with some meta-information. This
can be done by e.g. using describing files (maybe even using XML), or by using
the Java 1.5 annotations[24].

34 DESIGNING A SOLUTION

By using external files to list the persistable types, the information is removed
from the elements that it concerns. The information that is needed for the system
developer to understand the semantics of the type, is split to several locations. In
effect, it becomes more cumbersome for the system developer to understand the
code or there must exist some tool to support this.

Java annotations places the information next to the class and type definition.
Moreover, the information is present without breaking the syntax of Java, enabling
compilation by a standard JavaC. Figure 3.4 shows this idea.

1 // annotations definition
2 public @interface Persistable {
3 . . .
4 }
5
6 // class using Persistable annotation
7 public @Persistable class Person {
8 . . .
9 }

Figure 3.4: Marking a type persistent with an annotation.

3.3.4 Introducing new syntax

The last approach is to introduce some new syntax to prescribe when a type is
persistable. Figure 3.5 shows how this syntax might be. The placement of the new
syntax element, the keyword persistable, is in the class declaration.

1 public class persistable Person {
2 // class body
3 }

Figure 3.5: Marking a type persistent with a new syntax.

3.3.5 Conclusion

Extending a common superclass is discarded because that inhibits persistable classes
from inheriting from other classes given the single inheritance of Java. Using meta
data represented in external files decreases the system developers readability.

We are now left with three alternatives. Implementing a common empty, in-
terface (i.e. with no method signatures), use meta data represented in form of
annotations or extending the existing syntax.

3.4 MAPPING FROM OBJECTS TO RELATIONS 35

At this point of the design process, neither of the alternatives are chosen. De-
pending of the style of the rest of the design, either of the alternatives might be
chosen, to achieve the most coherent solution.

3.4 Mapping from objects to relations

As stated previously, as a first approach PersiJ focuses on working with database
schema’s inferred from the object model. This means that mapping relational mod-
els to objects models is not covered for now. Moreover, since Java does not have
multiple inheritance, only single inheritance is considered. Ambler[3] has written
in some detail about techniques to solve problems relating to mapping objects to
relations. In the following we present different approaches to the issues concerning
the mapping are briefly described. If any of the approaches is favorable over the
others, it is explained why so.

The basic (and somewhat naive approach) is: One object maps to one tuple,
objects of the same class belong to the same relation, and object members become
attributes in the relation. While this approach provides a good starting point, it
does need to be altered when following issues are taken into account: How do we
links objects with their persistable counterparts? (shadow information). Determin-
ing which object members to persist (Persistable object members). Dealing with
type mismatch. Object members might be reference(s) to other object(s) (modeling
references), inheritance (modeling inheritance).

3.4.1 Shadow information

No matter which approach is taken to map the objects to relations, some informa-
tion needs to be present in the objects - namely the primary keys that identify the
tuples they become in the RDBMS. This information is dubbed “shadow informa-
tion”.

3.4.2 Persistable object members

Given that only a subset of the classes are persistable, naturally not all members
of an object can be persisted. Only the members that belong to a type that is
marked persistable (as discussed in Section 3.3) can be persisted. The state of other
members is not persisted. Exceptions to this rule is the types in the java.lang
package that wrap around the primitive types, and the type String.

3.4.2.1 Dealing with inheritance

How about inheritance? - Lets consider the different cases that may occur:

Non-persistable class inheriting from non-persistable class No change to Java
1.5 syntax and semantics.

36 DESIGNING A SOLUTION

Non-persistable class inheriting from persistable class The class inherits mem-
bers as it would do if the super-class had been non-persistable. The class is
not treated as a persistable class, and can not be neither retrieved nor inserted
into persistent storage.

Persistable class inheriting from non-persistable class If any of the inherited
members are of a persistable type, they are persisted. Other members that
are of a type that is not persistable, are not persisted.

Persistable class inheriting from persistable class Any inherited members of a
persistable type, become persistable.

For the two latter cases, the Section 3.4.5 describe in detail how the inheritance
structure is mapped to the relational model.

3.4.3 Type mismatch

Java supports some primitive types, namely char, int, boolean, byte, double,
float, long, and short. These do, to some degree map directly to RDBMS data
types, and in general, object members that are primitive types, map to an attribute in
a relation. The domain range of the primitive types vary from RDBMS to RDBMS.
Until a concrete implementation of PersiJ is designed, it is not considered how to
achieve optimal mapping of the primitive types.

Achieving an optimal mapping depends on several aspects:

• The conversion from the primitive type in Java to the primitive type in the
database must be able to be performed in such a fashion that the whole do-
main range of the Java primitive can be represented in the database primitive.
That is, there must be no loss of information.

• The receiving primitive type in the database must have as small a domain
range as possible - resembling the Java type as closely as possible. As an ex-
ample: If all the primitive types are mapped to Binary Large OBject (BLOB)
variables in the database, the RDBMS can not use indexes on the variables,
nor maintain knowledge about data topology, etc.

3.4.4 Modeling relationships

Relationships between objects are (normally) expressed either by an object mem-
ber being a reference to another object, or the member being a collection of refer-
ences to other objects. The relationships can be uni- or bi-directional depending on
whether the relationship can be traversed just one way, or both ways.

Previously, we stated that only object members that belong to types that are
marked persistable, should be persisted. Having a one-to-many relation is modeled
using a collection of references to other objects. One solution could be recognizing

3.4 MAPPING FROM OBJECTS TO RELATIONS 37

some of the standard collection types in Java (ArrayList, Vector, etc.) as ref-
erence collections, and model these as persistent relationships. Another solution is
to provide a new type (implementing java.lang.Collection) that the system
developer can use to model persistent relationships between classes. As we will
see later, this approach enables some other desirable properties.

Figure 3.6 shows an example of (reflective) relationships - one-to-one, one-to-
many and many-to-many, using a special collection type.

1 public class Person {
2 //one-to-one relationship
3 private Person father;
4
5 //one-to-many relationship
6 private PersistableCollection<Person> children;
7
8 //many-to-many relationship
9 private PersistableCollection<Person> siblings;

10 }

Figure 3.6: How references are normally expressed object-oriented.

Relationships can be modeled with two different strategies in the relational
model - foreign keys and associative relations.

Foreign keys can be used to cross-reference relations. In one-to-one the foreign
keys must be present in one of the two relations - which one does not matter. In
one-to-many the key must be present in the one relation to the many relation. This
way the foreign key will know which of the many objects it is related to.

Many-to-many can be implemented by adding more attributes to each relation
thus ensuring that the mapping is preserved. This, on the other hand, is not optimal,
as the many-to-many is in fact less than many - as we have defined the maximum
number through the number of attributes added. Implementing many-to-many can
instead be done by associative relations. The idea is to implement an extra relation
between the many-to-many, so there arise a one-to-many on both sides of this new
relation. This way, we can model one-to-many between the to relations using the
extra new relation.

3.4.5 Modeling inheritance

Encountering inheritance, the initial approach of one object equals one tuple needs
to be reconsidered. In the following, the classes of Figure 3.7 are used as common
example. All of the strategies of mapping inheritance to relations, has one thing
in common. The base class of all other classes (Object in Java) is not consid-
ered the base class, and instead the next classes in the global inheritance hierarchy
becomes the roots of a number of inheritance hierarchies. This alteration of the

38 DESIGNING A SOLUTION

perception of the global inheritance hierarchy is done for several reasons: First,
Javas Object class does not contain any members that are reasonable to persist.
Second, if the whole type system is one global inheritance hierarchy, many of the
modeling schemes are invalidated.

1 public abstract class Person {
2 private String name;
3 }
4
5 public class Customer extends Person {
6 private Vector<Preference> preferences;
7 }
8
9 public class Employee extends Person {

10 private Real salary;
11 }
12
13
14 // Class added later:
15 public class Executive extends Employee {
16 private Real bonus;
17 }

Figure 3.7: Classes with inheritance.

Ambler[3] suggests different approaches, as we will discuss.

Map hierarchy to a single relation Each hierarchy corresponds to one relation,
with tuples for all the object members. If there are alterations to the class
hierarchy, attributes are removed or added to the relation.

Map each concrete class to a relation Each object becomes one tuple in one re-
lation. The classes in Figure 3.7 become a relation for Customer and Em-
ployee classes, with their inherited members appearing in each relation
because Person is declared abstract - they must both contain the attribute
name. An extension of the inheritance hierarchy with a new sub-class (like
Executive) requires the addition of a relation. Other alterations to the hi-
erarchy will require adding, altering or removing attributes in the affected
relations.

Map each class to its own relation Each class corresponds to a relation. Each
object then becomes one tuple in each relation from its class until the base
class. The classes in Figure 3.7 become a relation for each class. Extending
the inheritance hierarchy requires adding a relation, and other alterations
require only altering one relation.

3.5 QUERYING 39

Generic mapping A number of relations contain tuples that describe the type sys-
tem: the classes, their members, inheritance relations and attributes. Finally,
there is one relation containing tuples with all the values. Altering the inher-
itance hierarchy requires updates to the describing relations. This scheme
is quite flexible, but is disfavored compared to the former schemes. This
scheme does not scale very well, and queries quickly become very ineffec-
tive compared with the former schemes.

Each of the strategies have their own strengths and weaknesses - varying with
the most characteristic operations that some application might perform. Rather
than choosing one over the other, it may be beneficial to the let the system devel-
oper indicate which strategy should be used.

3.5 Querying

This section concerns querying - how it is possible to obtain information from
persistent storage based on selection predicates.

In the review of existing solutions in the previous chapter, we have encountered
different mechanisms of specifying the query. Revisiting each of these approaches
again, we consider if any of them are appropriate for PersiJ.

Since one of the design goals of PersiJ is having static checking, approaches
based on CLI and special SQL-like query languages (i.e. HQL) represented as
strings are not appropriate for PersiJ.

Cω implements static checking but breaks with the object-oriented paradigm.
Queries are simply written in a variation of SQL. One of the proposed criteria
concerns language alteration being minimal. Another concerns assimilation of the
new solution into the host language. Since SQL is not object-oriented, and since
it would be a quite voluminous expansion of the Java syntax, this approach is also
disfavored.

In db4o, and other approaches, it is possible to programmatically build a query
by adding constraints and other elements to some data structure representing a
query. Although obeying the object-oriented paradigm and enabling static check-
ing, these approaches typically suffer from being very verbose. They simply re-
quire too much typing from the system developer to achieve even simple queries.

As described earlier (Section 2.2.6) the design white-paper “Native queries for
persistent objects” by William R. Cook and Carl Rosenberger[11]1 presents a way
of expressing queries using the syntax and semantics of either Java or C#. While
presenting how to write queries corresponding to SQL SELECT statements with
WHERE clauses, the ability to express aggregated queries is not present. While
the white-paper makes elegant use of delegates (anonymous methods) in C#, the

1As of August 2005, a project was launched on java.net by Wesley Biggs: Plain Old Java Queries
(POJQ) aiming to implement Native Queries for native Java, and translating to Java Data Objects
Query Language (JDOQL). At the time of writing, no significant headway had been made.

40 DESIGNING A SOLUTION

equivalent Java solution involves using anonymous classes in a much less elegant
fashion.

The querying part of PersiJ is based on Native Queries, but including syntax
alterations. In the following, we will proceed by starting with describing the Native
Queries approach, and then describe how it can be altered to fit the requirements
of PersiJ.

3.5.1 Native Queries

Figure 3.8 (from [11]) shows the abstract class Predicate, with the abstract
method match. The query method being invoked in lines 7-15, takes an instance
of the Predicate class as parameter. The instance is here provided as an anonymous
implementation.

1 // abstract Predicate class
2 public abstract class Predicate <ExtentType> {
3 public <ExtentType> Predicate () {}
4 public abstract boolean match (ExtentType candidate);
5 }
6 //Invocation of a query using an anonymous specification of the Predicate class
7 List <Student> students = database.query <Student> (
8 new Predicate <Student> () {
9 public boolean match(Student student) {

10 return (
11 student.getAge() < 20 &&
12 student.getName().contains("f")
13);
14 }
15 });

Figure 3.8: The abstract query class, and an anonymous implementation of same.

The idea is that the match method is applied on every candidate object, and if
the match method evaluates to true, the candidate object is included in the result
set. The intention is that the compiler performs analysis of the match method,
translating it to an expression native to the underlying database system. If the
compilation is not able to translate the match method, it is always possible to fall
back to a default behavior - instantiating every candidate object, and invoking the
match method. However, the default behavior is of course undesirable due to the
high performance penalty.

3.5.2 Fitting Native Queries to PersiJ

Although Native Queries provides a way of expressing selection predicates through
the syntax and semantics of the host language, the required implementation of the

3.5 QUERYING 41

abstract method is quite inelegant.
The essence of the Native Queries approach is the implementation of the match

method, and this is the part we want to keep. The db.query requires some db ob-
ject, and as mentioned, the anonymous implementation of the abstract Predicate
class is quite verbose.

Since there is a lack of anonymous methods in Java 2 , we choose to extend the
syntax of Java with a new language construct.

3.5.3 New language construct: Existing

The language construction must be able to express the selection predicate, and
indicate whether or not the candidate is to be included in the result set. Figure 3.9
shows an example of this syntax construction.

1 PersistableCollection<Person> results = existing(Person p) {
2 include p;
3 }

Figure 3.9: The existing language extension

The existing keyword indicates that the following block contains a retrieval
of existing objects from persistent storage. Within the block, the system developer
should be able to express the predicate used for selection. Just like the match
method takes the candidate object as parameter, the existing block does the same.
By letting the identifier be specified in a “formal parameter list”-like way, the type
of the objects that are to be retrieved is also specified.

The basic semantics (as observed by the system developer) is that the code
within the existing block is evaluated once for each candidate object. As a first
approach, the selection predicate can be expressed with all the language elements
of Java.

3.5.3.1 Include keyword

Within the block, the system developer has to indicate whether or not the current
candidate object is to be included in the result set. A first approach might be to
use the return keyword, returning either true/false or the candidate object identi-
fier/null. In Java in general however, return indicates that the execution flow exits
from the current scope, which is not the behavior of the existing block. Therefore
we opt to introduce a new keyword - include.

2C# has anonymous methods, called delegates

42 DESIGNING A SOLUTION

3.5.3.2 Informal semantics

Developing the example a bit further, Figure 3.10 shows an existing block using a
selection predicate. The intuitive meaning of the example is that if the name of a
candidate object is “Peter”, the object should be included in the result set. To be
able to translate this to SQL, we will try to informally describe the semantics of
the existing block.

1 PersistableCollection<Person> = existing(Person p) {
2 if(p.getName().equals("Peter")) {
3 include p;
4 }
5 }

Figure 3.10: An existing block with a selection predicate.

Comparing primitives A comparison of primitives can be translated directly to
a corresponding part of a WHERE clause in SQL.

Method invocations The equals() is a method invocation, with the inten-
tion of determining whether the object having the method invoked, and the ob-
ject passed in the actual parameter are equal. For some types, this behavior can
be translated directly to an equality comparison. This direct translation applies to
the encapsulating primitive types (Integer, Double, Boolean, etc) and to the
String type.

For an invocation of equals() or any other method on all other types, the
methods have to be investigated in a recursive manner, ending with comparison
operations on primitive members.

During the recursive investigation, a traversal of a reference to another per-
sistable type leads to a join in the SQL statement.

There are of course some limitations. All the references that appear on the
traversal, must be of a persistable type. If they are not of a persistable type, they
have no persistent representation.

Identifiers from enclosing scope In Figure 3.10, the parameter to the query is
expressed statically. One of the goals of PersiJ is however to enable dynamic pa-
rameters. An extension of the existing block therefore becomes that identifiers
from the enclosing scope of the existing block become in-scope for the existing
block, so the code in Figure 3.11 is possible.

The operations that concern the identifiers that are not dereferenced in some
manner by the candidate object, can be evaluated once, resulting in primitive values
that can be used as parameters to the SQL query.

3.5 QUERYING 43

1 public PersistableCollection<Person>

2 someOrdinaryMethod(String name, Integer minimumAge) {
3 // the identifiers name and minimumAge are in scope for the method, and
4 // therefore referenceable from whithin the existing block
5 PersistableCollection<Person> matchingPeople = existing(Person p) {
6 if(p.getAge() > minimumAge && p.getName().equals(name)) {
7 include p;
8 }
9 }

10 return matchingPeople;
11 }

Figure 3.11: Existing block using external identifier.

3.5.3.3 Return type

The return type of the existing block has to be some kind of collection that contains
references to the objects that satisfy the selection predicate. The Persistable-
Collection type may well hold the references. Using a (to PersiJ) custom col-
lections type also enables navigational prefetching, letting the Persistable-
Collection dynamically determine when to load objects from persistent storage.

3.5.3.4 Limitations

Some limitations to the expressiveness of the code within the existing block does
exist. One of them is that the methods that are invoked must be free of side effects.
If they have side effects, the behavior is undefined. Another is the issue of non-
termination. Since iteration constructs (for, while) are allowed, they can express
non-termination - which can not be expressed in SQL.

3.5.4 New language construct: Constructed

One of the powers of SQL and shortcomings of some of the reviewed solutions is
the ability to use aggregates. Take the following simple example. In Appendix A
we have a table called person. If we just need to see how many persons that is
contained within that table, we could use the existing block to select all persons
to a list, and thereafter counting them from within the programming language.
From an optimization point of view, this is highly inefficient.

In a system not using SQL you would simply use the SQL COUNT(x), where
x is the element you want counted. By doing this you are creating new data, not
directly present in the database.

Expressing aggregate queries should be possible in PersiJ. The following de-
scribes an idea for expressing aggregated queries that is still in a very early stage.

44 DESIGNING A SOLUTION

The language is expanded with one more language construct - similar to the
existing block. The code within the block is translated to SQL, Figure 3.12 gives an
example. The keyword chosen to denote the block, is constructed, the intuitive
meaning being that the value returned from the block is “constructed” from existing
data. The example shows how a count of the Person objects that are persisted is
obtained.

1 Integer numPersons = constructed<Integer> {
2 PersistableCollection<Person> allPeople = existing(Person p) {
3 include p;
4 }
5 return allPeople.size();
6 }

Figure 3.12: Example of the syntax for the constructed block.

The design of this language construct is still in a very preliminary state, and
apart from an idea about being able to have some methods on Persistable-
Collection that are recognized as expressing min, max, count and so forth, the
specifications remain vague at the time of writing.

3.5.5 Discussion

The discussed language extensions for expressing queries are still in a preliminary
stage. Much work needs to be done regarding formalizing grammars and formal se-
mantics. Although they are still at this quite raw stage, they do possess some quite
desirable properties: The syntax used to express selection predicates is not very
verbose. Moreover, it is object-oriented, and very close to the semantics of Java.
A major disadvantage is however that since the existing and constructed
blocks are not methods on a class or an object, they break with the object-oriented
paradigm. Apart from formally defining semantics and grammars, it is still an
open question whether the expressiveness of the selection predicates is equal to its
counterpart in SQL.

3.6 Manipulating data

This section concerns how inserting, updating and deleting objects from the per-
sistent storage can be expressed in PersiJ. In common we denote these operations
as manipulating data.

3.6.1 Implicit or explicit management?

A choice has to be made as to whether inserting, updating and deleting objects
from persistent storage is to be transparent for the system developer, or whether it

3.6 MANIPULATING DATA 45

requires explicit interaction from the system developer.
As a first approach, we consider the transparent option. We quickly recognize

that there are several problems that arise as a consequence of this choice.

3.6.2 Transparent manipulation

Transparent manipulation is the same approach as the orthogonally persistent sys-
tem PJama (see Section 2.2.3) - to the system developer there is no difference be-
tween the memory-management model, and the way persistent objects are treated
regarding when they are persisted, and when they are deleted.

In this case, inserting and updating is solely managed by the run-time envi-
ronment. This means that when you as system developer change an object you
cannot tell the application when these changes should be made persistent. There
are several issues to be considered in this scenario.

When are objects persisted? - How does the run-time environment guarantee
that instances of persistable types are persisted upon application termination?

Deleting works in a way similar to garbage collection of in-memory objects. If
all references to a persistent object cease to exist, the object is also removed from
the persistent storage. Figure 3.13 shows an example where a collection of objects
is deleted from the database. That is, if there are no other references to the objects.

1 // Retrieving all persons called Peter
2 PersistableCollection<Person> persons = existing(Person p) {
3 if(p.getFName().equals("Peter") {
4 include p;
5 }
6 }
7
8 // Deleting all persons called Peter
9 persons = null;

Figure 3.13: Deleting a group of persistent objects by nulling all references to
them.

Deleting an object is not necessarily an easy task. Moreover, as long as there
are references to the persistent objects in memory, the objects themselves remain
in memory. While this approach may work for small (or maybe even larger ap-
plications) that terminate frequently, applications that are not necessarily designed
for termination might face having to retain an ever-increasing number of objects in
memory.

The transparent approach means that the whole run-time environment (in the
case of Java, the JVM) needs to be altered to implement the new semantics of
persistent object manipulation. Altering the JVM does not lie within the limited
scope of this project - and even if it did, the PJama project showed us that this is a

46 DESIGNING A SOLUTION

task that is not easy.

3.6.3 Explicit manipulation

Providing the system developer the means of explicitly determining when to ma-
nipulate data can be done in several ways. In the following we will start by deter-
mining which operations that are needed to be able to manipulate objects. Then we
will outline some approaches to providing these operations, and determine which
of them is most viable.

As stated in Section 2.3, the scope of the current project does not include en-
abling bulk data manipulation based on selection predicates.

3.6.3.1 Necessary operations

SQL provides the operations INSERT, UPDATE and DELETE. Before proceeding
with determining how these will map to explicit operations in the programming
language, the semantics of the operations is shortly described:

INSERT inserts a new tuple in a relation - generating an error if unique constraints
on the relation are violated.

UPDATE updates a relation, assigning the specified values tuples to all the tuples
satisfying a selection predicate - enabling bulk data manipulation.

DELETE deletes tuples from a relation. The tuples to delete are specified with a
selection predicate.

Supporting the DELETE operation is straightforward when the selection predi-
cate is based only on the primary keys of the tuples. As mentioned in Section 3.4,
the primary keys are stored in the persistent objects as shadow information. Some
way of indicating the references to the objects that are to be deleted, is therefore
the straightforward mapping. For future reference, we call this operation unPersist.

Considering UPDATE and INSERT: Taking an alternate view than the SQL op-
erations, one might consider the typical situations when a system developer wants
to store an object. Given a persistable object, the system developer can have two
intentions:

1. Saving the object as-is, generating new tuples in the database if it has not
been persisted previously, or updating the existing tuples if the object has
been persisted previously. For future reference, we call this operation persist.

2. Regardless of whether the object has been persisted previously, store a new
instance of the object in the database, inserting new tuples as needed. For
future reference, we call this operation persistAsNew.

3.6 MANIPULATING DATA 47

3.6.3.2 Session object

Similar to Hibernate, one approach could be to have a session object, encapsulating
a session with a database. The operations could then be methods on the objects,
taking as parameter either a single reference to an object, or an Iterable type
containing references to the objects to perform the operation on. Figure 3.14 shows
an example of how this might be.

1 public void someMethod(Person p, Vector<Person> persons, Session s) {
2 // persisting:
3 s.persist(p);
4 s.persist(persons);
5
6 // persisting as new:
7 s.persistAsNew(p);
8 s.persistAsNew(persons);
9

10 //deleting:
11 s.unPersist(p);
12 s.unPersist(persons);
13 }

Figure 3.14: Manipulation operations on a session object.

3.6.3.3 Common methods on persistable objects

Another approach would be to let all persistable objects have three common meth-
ods implementing the manipulating operations. Figure 3.15 shows an example.

In favor of this approach compared with the session object, is that to perform
the operations, there does not need to be other objects than the ones that are to be
manipulated.

However, this approach presents some challenges. To the system developer
it is not apparent where the implementation of the operations reside. While the
methods might be injected by a pre-compiler, the implementation of the methods
is not available at compile time. If the persistable classes are indicated using a
marker interface, the method signatures could be included in the interface. Un-
fortunately, the interface does not make it clear to the system developer where the
implementations come from since it is empty.

3.6.3.4 Using the references type

The references type introduced in Section 3.4.4 might also be used. The operations
would then be methods on the collection type. The methods could then be over-
loaded, to accept either no arguments (the semantics then being that the operation

48 DESIGNING A SOLUTION

1 public void someMethod(Person p, Vector<Person> persons) {
2 // persisting:
3 p.persist();
4 for(Person tmpP : persons) {
5 tmpP.persist();
6 }
7
8 // persisting as new:
9 p.persistAsNew();

10 for(Person tmpP : persons) {
11 tmpP.persistAsNew();
12 }
13
14 //deleting:
15 p.unPersist();
16 for(Person tmpP : persons) {
17 tmpP.unPersist();
18 }
19 }

Figure 3.15: Manipulation operations directly on persistable classes.

be performed on all elements of the collection) or to accept one reference as pa-
rameter - performing the operation on the referenced object (if the object is present
in the collection). An example is shown in Figure 3.16.

1 public void someMethod(Person p, PersistableCollection<Person> persons) {
2 // persisting:
3 p.persist();
4 persons.persist();
5
6 // persisting as new:
7 p.persistAsNew();
8 persons.persistAsNew();
9

10 //deleting:
11 p.unPersist();
12 persons.unPersist();
13 }

Figure 3.16: Manipulation operations on the collections type.

Disadvantages of this approach is the increased complexity of the collections
type, and that the collections object that contains the reference(s) that need to be
manipulated has to be present to be able to perform the manipulation.

3.7 SUMMARY 49

There are several advantages. The syntax is less verbose than the two preceding
approaches. Using the references collection it is also able to ship unPersist
operations as bulk data manipulation to the RDBMS. It is not a mystery to the
system developer where the implementation comes from.

3.6.4 Conclusion

Each of the three latter approaches may be viable. However we are inclined towards
the last approach - using the references type to support data manipulation, due to
the fact that there is no need to inject new code in code maintained by the system
developer. Moreover, the smaller an API required to operate PersiJ, the easier it is
for the system developer to use the framework. If the session-style object can be
avoided all together, the API required may be smaller.

3.7 Summary

Throughout this chapter, alternatives to foundations for a solution to the impedance
mismatch problem have been discussed. This section is a summary of the conclu-
sion of each of these discussions:

Identifying persistable types Three viable alternatives to mark up persistable types
are identified: Using a marker interface, using annotations, or introducing a
new class modifier - modifying the syntax of Java.

Mapping objects to relations There are different aspects of the mapping - which
object members to persist, how to model inheritance, and how to model re-
lations. Some information that need not be seen by the system developer is
needed to relate the objects to their counterpart tuples - shadow information.
Several viable schemes of modeling inheritance are described, and it might
be beneficial to let the system developer indicate which scheme is appro-
priate. The discussion of how to model references between objects leads to
the introduction of a special collections class that can handle the references
- PersistableCollection. The mapping of references to the relational
model is achieved by using foreign keys and associative relations.

Querying Discussing existing approaches compared with criteria from the analy-
sis leads to the introduction of two new language constructs. The existing
block is used to retrieve objects of a persistable type from the database,
based on selection predicates expressed within the block. The syntax and
semantics of the contents of the block has a close resemblance to ordinary
Java. Criteria shipping is achieved by letting the scope of the context of
the block be accessible from within the block. The other language con-
struct, the constructed block, is used to obtain aggregated queries. Like
the existing block, the syntax and semantics bare a close resemblance

50 DESIGNING A SOLUTION

to Java. The return type of the blocks is the PersistableCollection,
and it is speculated that the class can be used to implement some scheme of
navigational prefetching.

Data manipulation Discarding the use of run-time environment managed persis-
tence, we proceed by identifying three operations that need be provided to
support data manipulation. Three viable ways of exposing these operations
are discussed, but simplicity of the provided API, less verbosity and the abil-
ity to perform the operations on many objects at once leads to the choice of
using the class PersistableCollection to expose the operations.

Thus, a foundation for PersiJ is laid out.

Chapter 4

Implementing a compiler
prototype

4.1 Introduction

The purpose of the prototype is to render further development and implementation
of the compiler probable. We seek to find new non-trivial aspects of the com-
piler implentation and thier solution. In our case this is the implentation of the
persistence functionality of our language. An area that seem difficult or at least
require further investigation is the mapping between the Java-like object-oriented
constructs to SQL that is used by the database. Congruence between the semantics
of the querying constructs and the relational world is especially interesting, and
will be the main focus of the prototype.

The rest of this chapter will be organized as follows. First we will give a de-
scription of our thoughts regarding the compilation process (Section 4.2). Then we
proceed to describe the actual implentation of the existing construct (Section 4.3).
Finally we summerize the chapter with a description of lessons learned with the
prototype (Section 4.4).

4.2 Envisioning the compilation process

With this section we would like to demonstrate our thoughts on the compilation
process. The implementation of the prototype compiler could be approached in
several ways. We could write a compiler from scratch or implement a pre-compiler
utilizing the already existing JavaC. We have chosen to implement the prototype
compiler as a pre-compiler as this has some obvious advantages. With this ap-
proach we can concentrate on implementing our language construct, and leave the
rest of the Java compilation, to the JavaC.

The compilation process of the pre-compiler is done in four steps. First we
scan through the source code, recognizing every language constructs that is intro-
duced by PersiJ. These are replaced by Java dummy code. This step also handles

51

52 IMPLEMENTING A COMPILER PROTOTYPE

checking validity of the syntax.
Secondly we compile the Java code, that is now free from PersiJ code, with the

JavaC. The now compiled classes can be loaded and provide reflective access to
the type system. Furthermore semantic verification of the rest of the Java code is
assured.

Next we translate the PersiJ code to Java code. In this step semantic verification
of the PersiJ blocks is performed. Last the PersiJ code now compiled into Java code
is injected into the code we had as starting point and then it is compiled using the
JavaC.

Steps in the compilation process are transparent for the system developer. The
output, if no errors are encountered, is the compiled Java byte code. In Sec-
tion 4.2.6 we will briefly describe how optimization can be performed before com-
piling the final Java byte code.

4.2.1 Steps in the pre-compiler

There are a few steps in the pre-compiler. They are summarized in the following:

• Parse through the code and do a syntactical check. Extract the PersiJ code
and inject compilable Java dummy code.

• Compile the Java source code (without PersiJ code) - because this gives us
the Java type system.

• Once the type system is present it is time to translate the PersiJ code. The
code is first validated from the type system (syntactical check), and then
translated to valid Java code and injected into the source files again.

• The source code is now containing only valid Java code and can be compiled
with JavaC.

The translation of PersiJ code to SQL has three main steps, verification as
described in Section 4.2.3, code generation as described in Section 4.2.4 and com-
piling as described in Section 4.2.5.

4.2.2 Identifying PersiJ code and type system generation

The first task is to identify the places in the source code where PersiJ code is
present. Once identified, it must be replaced with temporary dummy code. The
idea is, as just mentioned, to create intermediate source code that can be compiled
by JavaC.

If the code fails to compile, the error must lie someplace outside of the PersiJ
code, as we guarantee that the injected code can compile. If no errors exist, the
process continues.

All classes are then compiled with JavaC - thus giving us reflective access to
the type system of our program.

4.2 ENVISIONING THE COMPILATION PROCESS 53

4.2.3 Syntactic and semantic verification

Now that all classes have been compiled, we can use the information present
in the type system to verify the PersiJ code. Tasks of the verification includes
identifying the persistable classes and the blocks containing existing and
constructed.

4.2.3.1 Persistable

When the keyword persistable is encountered, the class in which it is present,
need to be verified before moving on. This verification consist of syntactic and
contextual analysis as with any other Java compilation. Also we need to tag the
class persistable (i.e. introducing class members, annotations, etc.) thus enabling
us to remove the persistable modifier, rendering the class to be valid Java 1.5
syntax. If the verification does not reveal any flaws or errors, the creation of the
database schema is possible. Otherwise the compilation process is terminated and
an error code is printed to the user.

4.2.3.2 Existing and constructed

Both the existing and constructed blocks are verified in a similar fashion,
since their basic construction are alike. We need to perform syntactic verification
on the existing and constructed blocks. The syntax within existing and
constructed blocks is a subset of the Java 1.5 syntax, thus leaving us the respon-
sibility to check it’s validity.

Another aspect of verifying the two blocks, is to check whether all classes that
is to be used in the database interaction is marked persistable. If they are not, we
cannot guarantee that they are persisted in the database and therefore should halt
the compilation process. This is where we need the type system, as mentioned in
Section 4.2.1 - that is, we need to check the types in the blocks with the compiled
persistable classes.

All the variables sent to an existing or constructed block are evaluated
when the block scope is opened. This is also known as criteria shipping (see Sec-
tion 2.1.6.1).

If the verification completes without errors, it is possible to generate the database
connection and the SQL statements needed to replace the blocks.

4.2.3.3 Data manipulation constructs

In Chapter 3 we decided that the system developer explicit should state when he
needs to (un)persist an object. Here we use two methods - persist() to per-
sist the object in the database (overwriting if the object is already present) and
persistAsNew() (always creating a new object). When deleting an object - new
or old - the method used is unPersist().

54 IMPLEMENTING A COMPILER PROTOTYPE

Data manipulating constructs are bound to the PersistableCollection de-
scribed in Section 3.5.3.3.

4.2.4 Code generation

After the verification is completed, it is time to generate code. First the persistable
classes should be used to generate the database schema and then the existing and
constructed blocks should be injected into Java code again replacing the previ-
ous injected dummy code.

4.2.4.1 Persistable

Classes marked persistable, should be mapped to the database. So besides having to
generate usual Java byte code, a mechanism to transform the structure of the class
into a form that is usable in the database is needed. We refer to this as mapping
objects to relations and this is described in Section 3.4.

When creating the database, all tables and attributes are made with lower case.
This is done to make it more simplified when transforming the PersiJ source code
such as existing and constructed to usable SQL statements.

4.2.4.2 Existing

Once the information in the persistable classes has been translated into a database
schema, it is time to look at the existing block. This task is a bit more complex
than with the persistable classes. First, we need to understand the semantics of the
code contained within the existing block. For instance, take a look at Figure 4.1.

1 PersistableCollection<Person> persons = existing(Person p){
2 if(p.getFName().equals("Peter"){
3 include p;
4 }
5 }

Figure 4.1: Example of the existing block.

In order to generate valid Java and SQL, we must first analyze each part of the
existing block.

The first thing the compiler encounters is the reserved word if. The if state-
ment needs to be analyzed - and in this case it can be done quite easily, as there
only exists one predicate: p.getFName().equals("Peter"). Translating this
to words we would say the we need all persons called ”Peter”. The person comes
from the class definition in the existing block (see Section 4.3 for more informa-
tion). The SQL statement we are looking for is SELECT * FROM person WHERE
fname = "Peter" (notice that person and fname are all in lower case).

4.2 ENVISIONING THE COMPILATION PROCESS 55

Figure 4.2 shows a special case, where the if statement is omitted. The if
statement is allowed absent if we are querying all objects of a certain type.

1 PersistableCollection<Person> persons = existing(Person p){
2 include p;
3 }

Figure 4.2: Example of existing block without if-statement.

Translated to English this would give us: we need all persons. This is a more
simple query than the one before, because the no predicate is present - we are
simply retrieving all objects from the database. In SQL we write SELECT * FROM
person.

4.2.4.3 Constructed

Although the constructed and existing blocks may seem alike, the constructed
block is treated a bit differently. This is because with the constructed block we
are constructing new elements which are not present in the database - or at least
not directly. For instance, take a look at Figure 4.3.

1 Integer numPersons = constructed<Integer> {
2 PersistableCollection<Person> persons = existing(Person p) {
3 if(p.getFName().equals("Peter")){
4 include p;
5 }
6 }
7 return p.size();
8 }

Figure 4.3: Example of the constructed block.

As you might notice there is a existing block present inside the constructed.
The idea is that we can reuse the basic ideas from the existing block, and add
the power of aggregates (see Section 3.5.4). Explained in plain English the idea in
Figure 4.3 would be: we need to count the number of persons in the database called
”Peter” thus the SQL statement we are looking for is SELECT count(fname)
FROM person WHERE fname = "Peter".

The difference between the constructed and existing block is the return
p.size() (in this case). In order to catch this we need to analyze the entire block
before constructing the SQL statements.

56 IMPLEMENTING A COMPILER PROTOTYPE

4.2.4.4 Data manipulation constructs

Data manipulating features are bound to the PersistableCollection (Sec-
tion 3.5.3.3).

4.2.5 Compiling

When the verification process is completed, the creation of the database schema
and all necessary SQL statements is possible. SQL statements is to be injected in
their respective places in the source code.

Afterward it is time to compile the entire application. The compilation can,
once more, be done with JavaC. Recall that all classes in the project at this state is
regular Java classes. It is unlikely that any errors occurs at this state, as the code
(regular Java code) was compiled once without problems. The code injected by the
PersiJC is compilable thus should not give any problems.

4.2.6 Optimization

The produced code from the pre-compiler could be optimized through manual op-
timization of the generated SQL statements. A way of enabling this type of opti-
mization, could be to allow interfering with the compilation process. If the com-
piler could be called with a flag, that prevented the last step of compiling Java code
with the injected SQL code, the system developer could force the output of the
PersiJ compiler to be a Java source code. Manual alterations could then be made
to the SQL statements, though this is not suggestible, as one loses the advantage of
the checking that the PersiJ compiler offers.

4.3 Actual implementation

As mentioned previously in this chapter, a problematic aspect of the compilation
process, is the translation of PersiJ code to SQL statements and Java. With this
in mind, we have implemented a prototype pre-compiler that is able to recognize a
small part of the existing block construct. The output of this translation is only a
SQL statement and in Section 4.3.2 we have an example of this output. But first, in
Section 4.3.1, we present the grammar for the existing block which is the grammar
that the actual prototype can recognize.

4.3.1 Grammar

The following paragraphs will describe how to read the grammar. A ? means that
the element should be present zero or one time. Reading a * means that the element
is present zero to many times and finally when reading a + the element should be
present at least once but can be many.

4.3 ACTUAL IMPLEMENTATION 57

<ExistingBlock> ::= existing (<ObjectDeclaration>)
{ (<IfStatement> | <IncludeStatement>) }

<ObjectDeclaration> ::= <ClassName> <identifier>

<IfStatement> ::= if (<Expression>)
{ <IncludeStatement> }

<IncludeStatement> ::= include <identifier> ;
<Expression> ::= <ConditionalOrExpression>

<ConditionalOrExpression> ::= <ConditionalAndExpression>

(|| <ConditionalAndExpression>)*
<ConditionalAndExpression> ::= <RelationalExpression>

(&& <RelationalExpression>)*
<RelationalExpression> ::= <PrimaryExpression>

(<RelationalOperator>

<PrimaryExpression>)?
<PrimaryExpression> ::= [!] (<MethodCall> | <FieldName>

| <ExpresionParenthical>)
<ExpresionParenthical> ::= (<Expression>)
<FieldName> ::= <identifier> (. <identifier>)+
<MethodCall> ::= <identifier> (. <Method>)+
<Method> ::= <MethodName> ((<Argument>)?)
<MethodName> ::= <identifier>

<Argument> ::= <String> | <Integer>

<RelationalOperator> ::= ! = | == | <

| > | <= | >=

<Bool> ::= true | false
<ClassName> ::= <identifier>

<String> ::= ” (<digit> | <char>)* ”
<identifier> ::= <digit> ((<digit>)+ | (<char>)+)*
<digit> ::= [0-9]
<char> ::= [a-z, A-Z]

Table 4.1: Grammar for existing block.

Reserved words (i.e. existing and include) are written in bold font face.
The complete grammar is presented in Extended Backus Naur Form (EBNF) in
Table 4.1.

4.3.2 Example code

We will now present the PersiJ code that our compiler actually can translate into
SQL. For instance, it is possible to retrieve all elements from the database. It is
possible to recognized the code in Figure 4.4 Notice that PersiJC in its current
form cannot return anything. The output from this piece of code will be SELECT
* FROM person.

1 existing(Person p) {
2 include p;
3 }

Figure 4.4: Existing block example: Select whole table.

This example is not all that exciting - on the other hand, when we add a pred-
icate to the block it becomes more interesting. For instance, we could get all per-

58 IMPLEMENTING A COMPILER PROTOTYPE

sons called ”Peter”. Figure 4.5 shows this. The SQL generated here is SELECT *
FROM person WHERE fname = "Peter".

1 existing(Person p) {
2 if{p.getFName().equals("Peter") {
3 include p;
4 }
5 }

Figure 4.5: Existing block example: Select all persons called ”Peter”.

It is also possible to use the and/or construction. Figure 4.6 shows this idea
with an and (&&). This would produce the SQL statement SELECT * FROM
person WHERE (fname = "Peter" AND lname = "Madsen").

1 existing(Person p){
2 if((p.getFName().equals("Peter") && p.getLName().equals("Madsen"))){
3 include p;
4 }
5 }

Figure 4.6: Existing block example: Select with where clause

It is also possible to extend this with parenthesis - as many as you like. It is also
possible to have an arbitrary number of and/or after each other. Figure 4.7 shows
this example. Here it is possible to see that we have used many parenthesis and
even a not (line 3). This means that is is possible to create a negated boolean ex-
pression. The SQL statement generated here is SELECT * FROM person WHERE
(fname = "Peter" AND lname = "Madsen") OR (...) OR (((fname
<> "Rolf")))

1 existing(Person p){
2 if(((p.getFName().equals("Peter") && p.getLName().equals("Madsen")))
3 | | (. . .) | | (((!p.getFName().equals("Rolf"))))){
4 include p;
5 }
6 }

Figure 4.7: Existing block example: Arbitrary number of predicates.

4.4 DISCUSSION 59

4.4 Discussion

In the beginning of this chapter we stated that we would implement a prototype.
The function of this prototype was to see how trivial the translation of PersiJ code
into SQL. This turned out to be a non-trivial translation - and the compiler cannot
even do anything useful other than the translation.

The prototype has demonstrated that evaluation of method calls to SQL is not
as easy as we have laid it out in this chapter. We have in this chapter translated
method calls to English, and from English to SQL - which is straight forward.

Our prototype only supports the equals() method on strings. This means
that boolean operators such as == and != have not been implemented. Also, if the
equals() is not side-free (a system developer has changed the function of this)
we cannot do anything, as our interpretation of equals is as the same as the Java
specification - comparing two strings.

We argue that at some point, the equality testing within the equals() method
will consist of primitive types - strings included - compared with other primitive
types. If the compiler can understand the semantics of the method and identify the
compared primitives, we will be able to map these to the WHERE clause in the SQL
statement.

60 IMPLEMENTING A COMPILER PROTOTYPE

Chapter 5

Conclusion

5.1 Conclusion

The analysis of the impedance mismatch problem led to a listing of a number of
criteria to evaluate attempts to solve these problems. Though there are many at-
tempts at solutions, all seem to be deficient in some way or another with regard to
the proposed criteria. By prioritizing these criteria, a problem statement was for-
mulated, giving some design goals for a new solution to the impedance mismatch
problem.

Using these design goals as a foundation for the design process, a sketch of a
new solution to the impedance mismatch problem (PersiJ) has been evolved. The
solution is only sketched, with many parts still having several potential forms. This
is intentional - the purpose being to asses that the design goals could be met.
But how does the proposed solution match with the design goals?

Assimilation The proposed mechanisms for identifying persistable classes, map-
ping data and manipulating data all fit with the object-oriented paradigm.
While the new language constructs for querying do not conform with the
object-oriented paradigm, the syntax and semantics used to express the pred-
icates used to evaluate the selection, uses the syntax of the host language, and
a semantics that bears close resemblance.

Partial persistence PersiJ allows for indication of persistable types, distinguish-
ing these from the rest.

Statically checked Expressing predicates using a syntax and semantics that is part
of the language enables static checking to be performed using a preprocessor.

Minimal alteration A total of three new keywords have been introduced and one
new data type.

Performance Due to the fact that the existing and constructed blocks in-
tentionally are compiled to CLI code using JDBC, the queries are expressed

61

62 CONCLUSION

in SQL, and the database is at liberty to optimize. The compilation from
existing and constructed has only been investigated to a very rudi-
mentary stage, and it remains to provide a final proof-of-concept. Whether
the existing and constructed blocks can be composed and the resulting
queries shipped as one to the database, remains unanswered.

We believe that PersiJ provides viable foundations for further development of
a solution to the impedance mismatch problem showing some interesting charac-
teristics.

5.2 Future work

The implementation of a rudimentary prototype of a compiler for PersiJ has been
commenced to uncover problematic areas. This process has showed that the com-
pilation of the code within the querying constructs as far from trivial. More work
needs to be done, specifying a formal semantics of the existing and constructed
blocks to be able to proceed with the development of a working compiler.

Although PersiJ is in conformance with the design goals, much work has to
be done before PersiJ is a working solution. The envisioned compilation process
needs to be implemented.

Some language design work also remains. Although concurrency was disre-
garded during the design of PersiJ, concurrent programming is a requirement if
PersiJ is to become a solution fitted for real-world problem solving. One of the
biggest challenges is to be able to guarantee ACID properties using the concurrency
constructs of programming languages. Concurrency constructs in programming
languages is an open question, and maybe recent work with Concurrent Haskell by
Tom Harris et al[18] on transactional memory could prove useful.

New to Java 1.5 is (among other things) annotations. These could be used in
the persistable classes as described in Section 3.3.3. An addition to the example
Figure 3.4 could be to use annotations to give more meaning to the classes. This
meta data could then be used in the translation from classes to database schemas.
An example showing this additional information is shown in Figure 5.1. Although
we have not been focusing on annotations, they could prove to be a powerful tool.
This is at least what the team behind Hibernate think. They are currently working
on implementing annotations into their framework thus eliminating the need for
the XML mapping files[19]. The use of annotations could maybe even be taken
further - using the Annotations Processing Tool[1] to mark up query blocks.

We have chosen not to focus on legacy database schemas. Perhaps we could
use some ideas as those Hibernate is using. Recall from Section 2.2.2 that Hiber-
nate can generate the mapping files from the database. Perhaps we could use the
database to generate the skeleton of a class - then only leaving the implementation
to the system developer.

Schema evolution during the development phase and subsequent maintenance

5.2 FUTURE WORK 63

1 public @Persistable class Person {
2 private String fname;
3 private String lname;
4
5 @unique
6 private String socialSecurityNumber;
7
8 @onDeleteCasade
9 private Department department;

10
11 @onDeleteRestrict
12 private PersistableCollection<Project> project;
13
14 // getter and setters
15 }

Figure 5.1: Example of how annotations could be used.

of an application is hardly a rare event. Some mechanism of supporting schema
evolution may prove interesting work.

Although we have looked a bit at navigational prefetching, this could be studied
in greater depth. As Philip A. Bernstein et al[6] states, then navigational prefetch-
ing is an area of great importance, because this is a place where performance can
be gained.

According to William R. Cook and Ali H. Ibrahim[9], bulk manipulation is not
efficient in neither OR nor Java-based persistent programming languages. There-
fore, looking to how PersiJ could support bulk manipulations could also be an area
of further investigation.

64 CONCLUSION

Bibliography

[1] Annotations processing tool. http://java.sun.com/j2se/1.5.0/
docs/guide/apt/index.html.

[2] ABRAHAM SILBERSCHATZ, H. F. K., AND SUDARSHAN, S. Database
System Concepts, fourth edition ed. McGraw-Hill, 2002.

[3] AMBLER, S. W. Agile Database Techniques: Effective Strategies for the
Agile Software Developer. Wiley, John & Sons, Incorporated, 2003.

[4] ATKINSON, M., AND JORDAN, M. Orthogonal persistence for the java plat-
form - draft specification, jun 24 1999.

[5] ATKINSON, M. P. Persistence and java - a balancing act. In Proceedings of
the International Symposium on Objects and Databases (London, UK, 2001),
Springer-Verlag, pp. 1–31.

[6] BERNSTEIN, P. A., PAL, S., AND SHUTT, D. Context-based prefetch for
implementing objects on relations. In VLDB ’99: Proceedings of the 25th In-
ternational Conference on Very Large Data Bases (San Francisco, CA, USA,
1999), Morgan Kaufmann Publishers Inc., pp. 327–338.

[7] BIGGS, W. Plain old java queries. https://pojq.dev.java.net.

[8] The castor project. http://www.castor.org/.

[9] COOK, W. R., AND IBRAHIM, A. H. Integrating programming languages
& databases: What’s the problem? Submitted for publication may 2005,
accessed November 2005 at http://www.cs.utexas.edu/users/
wcook/Drafts/2005/PLDBProblem.pdf, 2005.

[10] COOK, W. R., AND RAI, S. Safe query objects: statically typed objects as
remotely executable queries. In ICSE ’05: Proceedings of the 27th inter-
national conference on Software engineering (New York, NY, USA, 2005),
ACM Press, pp. 97–106.

[11] COOK, W. R., AND ROSENBERGER, C. Native queries for persistent
objects. http://www.cs.utexas.edu/users/wcook/papers/
NativeQueries/NativeQueries8-23-05.pdf, August 2005.

65

66 BIBLIOGRAPHY

[12] Visual c# developer center. http://msdn.microsoft.com/
vcsharp/programming/language/.

[13] db4objects. http://www.db4o.com/.

[14] Enterprise javabeans (ejb). http://java.sun.com/products/
ejb/.

[15] GAVIN BIERMAN, ERIK MEIJER, W. S. The essence of data access in cω. In
Lecture Notes in Computer Science (August 2005), vol. 3586, pp. 287–311.

[16] GAWECKI, A., AND MATTHES, F. Integrating query and program optimiza-
tion using persistent CPS representations. In Fully Integrated Data Environ-
ments, M. P. Atkinson and R. Welland, Eds., ESPRIT Basic Research Series.
2000, pp. 496–501.

[17] GOULD, C., SU, Z., AND DEVANBU, P. Static checking of dynamically
generated queries in database applications. In ICSE ’04: Proceedings of the
26th International Conference on Software Engineering (Washington, DC,
USA, 2004), IEEE Computer Society, pp. 645–654.

[18] HARRIS, T., MARLOW, S., PEYTON-JONES, S., AND HERLIHY, M. Com-
posable memory transactions. In PPoPP ’05: Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel programming
(New York, NY, USA, 2005), ACM Press, pp. 48–60.

[19] Hibernate. http://www.hibernate.org/.

[20] Hibernate query language. http://www.hibernate.org/hib
docs/reference/en/html/queryhql.html.

[21] ibatis. http://ibatis.apache.org/.

[22] Ibm. http://www.ibm.com/.

[23] JAMES GOSLING, BILL JOY, G. S., AND BRACHA, G. The JavaTMLanguage
Specification, 3rd Edition. Addison Wesley Professional, 2005.

[24] Java annotations. http://java.sun.com/j2se/1.5.0/docs/
guide/language/annotations.html.

[25] Java programming language compiler. http://java.sun.com/j2se/
1.5.0/docs/tooldocs/solaris/javac.html.

[26] Jpox java persistent objects. http://www.jpox.org/.

[27] .net language integrated query. http://msdn.microsoft.com/
netframework/future/linq/.

BIBLIOGRAPHY 67

[28] MAIER, D. Representing database programs as objects. 377–386.

[29] MCCLURE, R. A., AND KRÜGER, I. H. Sql dom: compile time check-
ing of dynamic sql statements. In ICSE ’05: Proceedings of the 27th inter-
national conference on Software engineering (New York, NY, USA, 2005),
ACM Press, pp. 88–96.

[30] Microsoft research. http://research.microsoft.com/.

[31] Mysql.com. http://www.mysql.com/.

[32] Oracle corporation. http://www.oracle.com.

[33] Pjama: Orthogonal persistence for the java platform (opj). http://
research.sun.com/forest/opj.main.html.

[34] Postgresql. http://www.postgresql.org/.

[35] Sql-java (sqlj). http://www.sqlj.org/.

[36] Sun microsystems. http://www.sun.com/.

[37] Oracle toplink. http://www.oracle.com/technology/
products/ias/toplink/.

68 BIBLIOGRAPHY

Appendix A

Example of database and Java
mapping

This appendix is dedicated to describe the relational database used throughout the
report. The database in question consists of three tables:

• person

• department

• project

There exists two additional tables. One is the relationship between person and
project and is a many-to-many relation. In order to model this in a RDBMS we
need one table to explain this relation, thus the project person table. The other is
person and departments called deptments person.

Figure A.1 illustrates the relations of all tables in our example database.

A.1 Description of the database

Each person is constructed of four attributes. There is an id (id) that identifies
each person uniquely. This id is used in the relation to the project he is working
on - thus one person can be related to one project and only one - but since this id
is not related directly to the project table but to a project-person table, this means
that each person can be working on more than one project. The person also has a
first name (fname) and a last name (lname). Finally each person has a relation to
a department. This goes, as with the project, through a table that makes it possible
to implement a many-to-many relation in the database. Figure A.2 shows the Java
source code needed to implement the person class.

69

70 EXAMPLE OF DATABASE AND JAVA MAPPING

Each project consist of an id (id) which identifies each project uniquely. This
id is the one used in the project-person relation. The project also can be identified
by a name (name). Finally each project is related to one department (dep id).
Figure A.3 shows the Java code that implements the project class.

The final table, departments, has an id (id), like the two others, to identify each
department uniquely. This id is referenced by the project table (dep id) as one
project is related to one department, but one department can have many projects.
Each department has also a name (dep name). Finally each department is related
to a person (dep id) through the person-department table, because many persons
can be working in many departments - thus another many-to-many. Figure A.4
shows the Java code.

id fname lname dep_id
person

department_idperson_id

id name dep_id
project

project_id person_id
project_person

person_department

department
id dep_name dep_id

Figure A.1: Example database.

A.2 Mapping database to Java code

Mapping the relational database to the object oriented programming language Java
would give us three classes, Person (see Figure A.2), Department (see) and Project
(see Figure A.4).

A.2 MAPPING DATABASE TO JAVA CODE 71

1 package model;
2 public class Person{
3 private int id;
4 private String fname;
5 private String lname;
6 private int depId;
7 private ArrayList<int> projectId;
8
9 //getter and setters

10 }

Figure A.2: Java code for the class Person.

1 package model;
2 public class Department{
3 private int id;
4 private String depName;
5
6 //getter and setters
7 }

Figure A.3: Java code for the class Department.

1 package model;
2
3 public class Project{
4 private int id;
5 private String name;
6 private int depId;
7 private ArrayList<int> personId;
8
9 //getter and setters

10 }
11

Figure A.4: Java code for the class Project.

